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Abstract

Solution of Cauchy-type singular integral equations permits the evaluation of the fracture parameters at the crack
tips very accurately. However, it does not permit the determination of the crack opening and sliding displacements
while ensuring no crack surface interpenetration unless the location of the contact zone is known a priori. In order
to circumvent this shortcoming, this study presents a solution method based on the Hadamard-type singular integral
equations to obtain the crack opening and sliding displacements directly while enforcing the appropriate conditions
to prevent interpenetration. Furthermore, the crack opening displacements are physically more meaningful and readily
validated against the finite element analysis predictions. The numerical solutions of the hypersingular integral equations
provide not only crack opening and sliding displacements directly but also the stress intensity factors and energy release
rates. Also, the behavior of the energy release rate is examined as the cohesive crack located parallel to the interface
approaches the interface from either the soft or the stiff side of the interface. The limiting value of the energy release
rate is established by considering an interface crack. As the cohesive crack approaches the interface from either side
of the interface, the energy release rate approaches to that of the interface crack. However, the length of contact zone
between the cohesive crack surfaces under uniform shear loading does not approach to that of the interface crack.
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1. Introduction

In the construction of aircraft and space structures or electronic devices, the fusion process and adhesion
are the primary means for joining different materials. However, the interface between dissimilar materials is
always prone to imperfections. If the bond is not sufficiently strong, it delaminates along the interface. If the
bond is too strong to delaminate, the cracking (cohesive failure) occurs in the weakest of the adjoining
materials. Within the realm of linear elasticity theory, the stress states associated with a cohesive crack
embedded in a homogeneous medium and an interface crack are different in nature. Therefore, the initial
location of the crack tip plays a vital role in the analysis of dissimilar materials having a crack. If the crack-
ing is of cohesive type as shown in Fig. 1, the well-established square root singularity prevails at the crack
tips. However, the presence of a crack along the interface induces an oscillating stress singularity with a
very rapid reversal of sign as the tip of the crack is approached according to Williams (1959). As pointed
out by England (1965), Erdogan (1965), Rice and Sih (1965) and Malyshev and Salganik (1965), this pecu-
liar oscillatory singularity leads to the wrinkling of the crack faces and overlapping (interpenetration) of the
material. England showed that this kind of oscillatory singularity is physically inadmissible but is confined
to a very small region near the crack tips. Erdogan (1965) suggested that this interpenetration is not signif-
icant in practical terms because it is confined to a very small region. This situation is analogous to the
homogeneous case wherein the unbounded stresses are physically impossible and mathematically anoma-
lous. However, they provide useful information when the extent of their singular behavior is contained
within a small region.

To correct the physical inadmissibility of crack surface interpenetration, Comninou (1977) addressed the
apparent physical inconsistency of the oscillatory stress field by using a model that imposed contact zones
ahead of the crack tips. Subjected to a tensile loading, the contact zone near the crack tip is found to be on
the order of 10~ and that the oscillatory character of the stress field disappears. Also, only the shear stress
is singular ahead of the crack tip, while the normal stress is tensile but finite. However, the global nature of
the stress field is very close to that of a fully opened crack which possesses an oscillatory singularity. There-
fore, the oscillatory characteristic can be considered an artifact of the linear elastic analysis and confined to
a region extremely close to the crack tip. Atkinson (1977, 1982) concluded that the solutions with an oscil-
latory stress field are valid only away from the crack tip in the sense of asymptotic expansions. Thus, the
solutions using the oscillatory character adequately model the near and far field stresses outside the region
of interpenetration.

While the crack surface interpenetration can be removed by imposing contact zones ahead of the crack
tips, the singular stress field becomes purely anti-symmetric about the interface crack and consequently
crack propagation is restricted only to the sliding mode. Although it is reasonable to expect sliding mode
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Fig. 1. Schematic for the cohesive crack with contact zone.
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dominance when the material moduli differ significantly, it is unlikely that crack propagation under tension
loading abruptly changes from opening mode in the case of a cohesive crack located parallel to an interface
to a pure sliding mode in the case of an interface crack upon the introduction of a simple discontinuity in
moduli.

Subjected to combined tension and shear loading, Comninou and Schmueser (1979) and Simonov (1990)
found that the extent of contact zone varies at the crack tips. At one end, the region of contact zone is al-
ways small; however, the region of contact zone at the other end may be large depending on material prop-
erties and the ratio of applied normal stress to shear stress. When the applied loading is dominated by the
shear stress, the contact zone becomes significant. In the extreme case of pure shear loading, the contact
zone may be as large as half of the crack length.

In determining the stress intensity factors for an interface crack with an oscillatory behavior, the previ-
ous analyses assume that the crack surfaces fully open without any contact between the opposing faces.
Although this type of analysis is wrong at the scale of the contact zone, it provides acceptable stress inten-
sity factors to characterize the near tip stress state as long as the contact zone is much smaller than crack
length. If the contact zone is substantial, then this type of analysis becomes invalid.

There have been many discussions on its unusual local characteristics of an interface crack throughout
the years. Its validity in a variety of situations has been clarified by Rice (1988). The singular stress field
directly ahead of the crack tip is characterized by the complex stress intensity factor whose real and imag-
inary parts no longer represent the usual definitions of the stress intensity factors for the opening and shear-
ing modes of a crack in a homogeneous material. There have been varying definitions of the stress intensity
factor for the purpose of characterizing the near tip field of an interfacial crack. Most of these definitions
differ from one another only by a phase factor (Rice and Sih, 1965; Erdogan, 1965; Rice, 1988). The inter-
face crack induces both opening and shearing mode behavior even under single mode of loading. The ten-
sile and shear effects near the crack tips are intrinsically inseparable.

A more in depth treatment of interfacial fracture mechanics for isotropic materials is given by Rice
(1988) and Suo and Hutchinson (1990) among others can be found in the review article by Hutchinson
and Suo (1992). By introducing a characteristic length parameter, Rice (1988) eliminated the dependency
of the complex stress intensity factor on the measuring unit of the crack length. However, the choice of
the length parameter still remains ambiguous.

In order to remove the ambiguities associated with the characterization of an interface crack, Malyshev
and Salganik (1965) considered the behavior of the total strain energy release rate in terms of the complex
stress intensity factor. The strain energy release rate is well behaved even though the stress and displace-
ment fields possess the oscillatory behavior. As observed by Mulville et al. (1976), the strain energy release
rate remains relatively constant as the crack propagates along the interface.

In the previous analyses, the interface was idealized as a perfect bond line of zero thickness; however, the
oscillatory singular behavior would not arise in practice because the crack tip cannot be part of two differ-
ent materials at the same time. An alternative to an interface crack is the examination of a cohesive crack,
free of oscillations and interpenetration, as it approaches the interface. Erdogan (1971) considered a
bonded dissimilar material containing a crack parallel to the interface under the assumption that the crack
surfaces fully open without any contact between the opposing crack faces. Although this model removes the
interpenetration due to the oscillatory behavior of stress and displacement fields arising from material mis-
match, it still leads to unacceptable interpenetration when the applied loading is dominated by the shear
stress (Comninou, 1977; Erdogan and Wu, 1993). Atkinson (1977) also removed the interpenetration by
introducing an intervening material between the two dissimilar materials comprising the original interface.
Erdogan (1997) also discusses the mechanics and modeling issues concerning the interface cracks, and pre-
sents an extensive review.

Although the limiting value of the energy release rate can be investigated as the cohesive crack of non-
oscillating character approaches the interface, there is no smooth solution method yielding transition from
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one to the other. The solution method utilizing integral transformation techniques leads to a system of sin-
gular integral equations of the first kind for the cohesive crack. On the other hand, as the cohesive crack
approaches the interface, the system of singular integral equations becomes one of the second kinds. In
deriving the singular integral equations under the assumption that the crack fully opens, while imposing
the continuity conditions along the interface and the prescribed tractions on the crack surfaces, the deriv-
atives of the crack surface displacements serve as primary unknowns leading to Cauchy-type singular inte-
gral equations. Solution of these singular integral equations can be achieved by techniques developed by
Erdogan (1969) and Erdogan and Gupta (1972) yielding the stress intensity factors. However, these solu-
tions suffer from the interpenetration of opposing crack surfaces under the applied shear loading. Because
of the nature of the primary unknowns in the singular integral equations, all of the previous studies con-
cerning interface or cohesive cracks considered the calculation of the stress intensity factors or the energy
release rate rather than the crack surface displacements.

In order to eliminate the interpenetration of the opposing crack surfaces, this study considers the crack sur-
face displacements as primary unknowns in the derivation of the singular integral equations leading to Had-
amard-type singularity. Thus, the present approach is capable of enforcing the appropriate conditions to
prevent interpenetration of crack surfaces arising from the applied tractions. The crack surface displacements
are physically more meaningful and easy to compare with finite element solutions which fail to provide accu-
rate stress intensity and energy release rate without resorting to a refined mesh or a special crack-tip element.

Knowing the crack surface displacements, the energy release rate can be calculated based on the Griffith
criterion that involves work done per unit depth by the applied load acting through the crack surface dis-
placements. However, this method of calculation intrinsically assumes that the crack extension is self-
similar which is erroneous in the presence of both the opening and sliding modes. Therefore, the total
energy release rate defined by Malyshev and Salganik (1965) including the presence of both opening and
sliding modes is computed based on the concept of crack closure introduced by Irwin (1957). Majority
of the previous crack configurations concern symmetric tensile loading resulting in a gap between the crack
faces. However, an interpenetration develops between the crack faces under anti-symmetric loading without
the imposition of appropriate constraints at the crack faces. Regardless of the nature of the applied loads,
the interface cracks can never be fully open.

Similar to the investigation by Erdogan and Joseph (1988), this study examines the behavior of the en-
ergy release rate as the cohesive crack located parallel to the interface approaches the interface from either
side, and its limiting value is established by considering an interface crack. Unlike the previous study by
Erdogan and Joseph (1988), the present study imposes the appropriate constraints to prevent interpenetra-
tion of the crack surfaces by considering the crack surface displacements as primary unknowns in the der-
ivation of the singular integral equations. The description of the geometry and the crack configurations are
shown in the next section. The solution method and the numerical analysis of the singular integral equa-
tions with Hadamard-type singularity are described in the subsequent sections. The numerical results con-
cern the energy release rate calculations and the crack surface displacements.

2. Problem statement

As shown in Fig. 2, a crack located parallel to the interface of dissimilar materials is considered under
symmetric and anti-symmetric tractions acting on the crack surfaces while preventing crack surface inter-
penetration. This crack configuration was previously investigated by Erdogan (1971) under the assumption
of a fully open crack for both type of loading conditions leading to singular integral equations with
Cauchy-type singularity. As a special case of this configuration, an interface crack shown in Fig. 3 is also
considered to establish the limiting values of the strain energy release rate as the cohesive (homogeneous)
crack approaches the interface.
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Fig. 2. Crack geometry and notation for a cohesive crack.
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Fig. 3. Crack geometry and notation for an interface crack.

The crack configuration with respect to the interface of two dissimilar materials is described in Fig. 2.
The crack with a length of 2a, situated at a distance 4 from the interface lies along the x-axis of the Carte-
sian coordinate system (x, y) whose origin is located at the crack center. The other length parameters are
normalized with respect to half of the crack length which is taken to be unity, i.e., a = 1, without any loss of
generality. The geometry possesses symmetry with respect to x = 0 plane. As shown in Fig. 2, the material
on the upper part of the interface is divided into two regions denoted by S; and S3. The material between
the planes of crack and interface is represented by region, S;. The material on the upper part of the crack is
in region, S3. The material on the lower part of the interface occupies the region denoted by S,. The mate-
rial in each region is isotropic, elastic, and homogeneous, with shear moduli, u; = p3, 1o and Poisson’s
ratios, v; = vs, v,.

The displacement equilibrium equations in each region are

0 (Ou; Qv
2. . ) — ! ) =
WVt (4 )5 (ax " ay) 0 (1a)
0 (Ou; Qv
2 — =) =

where ©; and v; are the components of the displacement field along the x and y directions, and 4, is Lame’s
constant with (i = 1, 2, 3). The subscripted (or superscripted) i refers to the regions. Using the stress—strain
and kinematic relations, the stress components can be expressed as
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in which k;=3 — 4v;, and x; = f;t for plane strain and stress conditions, respectively.

Along the interface plane of y = —A between regions of S and S;, the continuity of displacement and
traction components requires that

ui(x,—h) =u(x,—h) 0<|x| <oo (3a)
vi(x, —h) = va(x,—h) 0<|x| < o0 (3b)
O')(;) (x,—h) = ay(v? (x,—h) 0<|x|<o0 (3c)
ag) (x,—h) = ag,) (x,—h) 0<|x| <0 (3d)

The applied tractions on the upper and lower crack surfaces of y = 0" and y = 0~ planes, respectively,
are specified as

lim o) (x,y) = lim ¢’ (x,y) = p(x) 0< |x| <a (4a)
y—0- yoot 7

lirég O’g) (x,y) = lim O’)(;) (x,y) =qx) 0<|x|<a (4b)
y— : y—0

in which the applied normal, p(x) and shear, ¢(x) tractions have the properties of

p(x) = (=1)'p(=x) and g(x) = (—=1)""¢(—x) ()
where the parameter, £ = 0 and ¢ = 1 denotes the symmetric and anti-symmetric tractions on the crack sur-

faces, respectively. The continuity of displacement and traction components along the crack plane of y =0
requires that

ylirg; ui(x,y) = ylilg uz(x,y) a<|x] <oo (6a)
Jlim v (x,y) = ylijgg vi(x, ) a < |x[ < oo (6b)
yllrél ol (x,y) = )lir(1)1+ ol (x,y) a<|x| < oo (6¢)
tim o) = lim o) () @< ] < o0 (6d)

The interpenetration of the crack surfaces is prevented by introducing a contact zone along which crack
opening is not permitted by imposing the condition of

v1(x,07) = 03(x,07) co<x< (7)

in which ¢, is the unknown distance from the center of crack where the contact zone starts, and c¢; is the
unknown distance from the center of crack where the contact zone ends. Therefore, § = ¢; — ¢g specifies
the extent of the contact zone as shown in Fig. 1. Finally, the far field regularity conditions require that

u;,v; > 0 for x — oo and y — oo (8)



B. Kilic et al. | International Journal of Solids and Structures 43 (2006) 1159-1188 1165

The mathematical boundary value problem then reduces to the determination of the non-trivial stress
field induced by the applied tractions on the crack surfaces. The solution to this problem provides the crack
opening and sliding displacements as well as the stress intensity factors and the energy release rates at the
crack tips. As a special configuration, an interface crack is also considered to establish the limiting values
for the energy release rate as the cohesive crack approaches the interface. Because the general loading can
be expressed in terms of the combination of symmetric and anti-symmetric loads, the crack surfaces are
subjected to either symmetric or anti-symmetric loads.

3. Solution procedure

The solution procedure involves the use of integral transformation techniques appropriate for mixed
boundary value problems. The displacement components in each region are represented by

) = [ o) 3 intem (90)
2 [ d’
e =1 [T o eostman (=129 (9b)

where ¢, y) and Yy {a, y) (i =1, 2, 3) are the unknown auxiliary functions, and ¢/ = 0 and ¢ = 1 correspond
to symmetric and anti-symmetric tractions on the crack surfaces, respectively.

Substitution from these integral representations into the displacement equilibrium equations, Eq. (1)
leads to a pair of second order, ordinary differential equations in each region as

0%, 0, oy,
:uia—yz — (A + 2p)on¢; — (1) a4 + ;) > 0 (10a)
! 0¢; Y, _
(=1) a4 + 1) o + (% + 21;) B pio2y; =0 (10b)

The general solution to these systems of equations can be readily written as

{ j } - {A"{ (—11>‘} “’Q({ <—11>‘ }y * { K,-/a(()—l)” }ﬂe * [A”{ (—11>‘“ }
1 0
*A"4<{ (—1) }y * { o/a(=1)" })]e

where 4;(o) (i=1, 2,3 and j =1, 2, 3, 4) are the unknown coefficients to be determined from the boundary
and continuity conditions.
Invoking the far field regularity conditions, Eq. (8) permits the determination of

Az = A3y = Ay = A =0 (12)

(11)

Enforcing the continuity of tractions, Egs. (6¢) and (6d) along the crack plane of y = 0 between regions S|
and S3, and the continuity conditions, Eq. (3) along the interface plane of y = —h between regions S; and S,
permits the determination of 4y, 415, A>3, A24, A3 and A3, in terms of 4,3 and A44. The explicit expres-
sions for these coefficients that are identical for both symmetric and anti-symmetric tractions on the crack
surfaces are given in Appendix A.

Substituting for these coefficients in the expressions for the continuity of displacement components, Egs.
(5a) and (5b) along the crack plane of y =0 leads to
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L

(5,0) — .07 = (14 )2 [ <Al3+“ ;j”m) d(jxy(sin(ax))dao (v =0,x] > a)

(13a)

v3(x,07) — 01 (x,07) = (1 + K])% /0OC <A13 _a er;l)AM) d(d % (cos(oax))dx =0 (y=0,|x| = a)

ox
(13b)
Imposing the applied tractions, Eq. (4) on the crack surfaces leads to
o0 d -
lim o)) (x,y) = lim i &) (%) ) (cos(ewx))doe = 5p(x) (v =0, x| < a) (14a)
00 d( T
Jim o)) = i | 6o oo (in)dn = 306x) (= Olxl <) (14b)
where
64 (,y) = 2o (a1 (1 + 2a(h + y))e ") — &) Ay + oy (1 + 16y — 20p)e™ A1
o (U )y (0 / (k1 + ) = 12/ (lapty + 1)) — 4’ Hay)e "4,
— wa (20h + 1)) (1 + Ky + 2ay)e 4, (15a)
and
&g)(a,y) = 2001 (ar (=1 + 20(h 4+ y))e ) 1) Ay5 4wy (1 — K1 + 2ay)e™ A4
o (U )y (1 / (k1 + ) = 12/ (lopty + 1)) = doPHar)e ™4,
— wa (20h + 1)) (=1 + 1y + 2ay)e 4, (15b)

in which the constant «, is defined as a; = ﬁ

Representing the opening and sliding of the crack surfaces by the unknown auxiliary functions U(x) and
V(x) in the form
u3(x,07) —u;(x,07) = U(x)H(a — x) (16a)
03(x,07) —v1(x,07) = V(x)H(a — x) (16b)
ensures the continuity of the displacement components, Egs. (5a) and (5b) along the crack plane. The Heavi-
side step function is represented by H(x). Note that these unknown functions, U(x) and ¥(x) have the property
of
Ux) = (-1)""U(=x) and V(x)=(=1)'V(-x) (17)

Invoking these unknown functions into Eq. (13) and solving for 4,5 and A4 result in

I | /Ow <<1+K1>U<x> d(d€£<sin<ax>>—<1—xl>v<x> d(dﬁ@os(ax)))dx (18a)

2(1—|—K1 ox ox
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and
14

1 > . d
Aig = —m“/o (U(x)W(Sln(m)) +V(x) d(o)’ (cos(ocx)))dx

Substituting for 4,3 and A4 in Eq. (14) and performing the appropriate limit operation leads to

- | 4 ) / " e ‘%(cos(at))%;)g(cos(ax))da
/ AUt / e s1n(oct))%a;((cos(ocx))doc
/ aro [ ) d(w)(cos(ar)) d(‘j;)ﬂ (eos(r)d =5 135 p(r)
and
—ylilg; OldtU(t) /000 ae“yﬁi)e(sin(at))dii—;)z(sin(ax))doc
+ o [Cow d(ft) sin(a) 35 sin(a)

d TEl"‘Kl
/dtV / Z(a doct cos(oct))d( )(sm( ))doczi o q(x)

where the coefficients .o/ (), %(a), € (o) and Z(a) are expressed as

A6) = a3, + 2k

RB(a) = a(yy + 2a ha(1l + ha))e
(o) = oy, + 2a1ho(—1 + ha))e 2"
Z(a) = o=y, + 2a,h*a?)e "

in which the known constants are defined by

1= (@re) e (@)
with

- Killy — K
_ M and @y — 11 21
My + K1l 2(py + Kapty)

1167

(18b)

(19a)

Considering symmetry properties of U(x) and V(x) and evaluating the infinite integrals in Eq. (19) lead

to a pair of integral equations with Hadamard-type singularity as

l/l &l 2dt+/l V(t)Kll(xat)dH‘/l U)Kz (x,t)dt = 1 +K1p(x)

TJo(t—x) 1 -1 2
%/11 (tlj_(;))zdt+/1 V()Ka (x, t)dl‘-i—/ll U)Ky (x,t)dt = 1;;:(1 (x)

(21a)

(21b)
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where the kernels are defined as

4 — (1 —x)*

2 a2
I G ) 42— 3(t x)3+12a1h
((t —x)* +4h%)

((t —x)* + 4h?)
(t —x)(4h* — (1 —x)%)
((r — x)* + 4h?)*

+8Cl1h

1 16h* — 2412 (t — x)* + (1 — x)*
Kll(x’[):E ’\/2 2 ( ) ( )

((t —x)* + 4n?)*

1
K]z(x, t) = E —4]’!’))1

r— 3
—((t ~ x)z n 4h2)2 + 96a,h

K21 (X, t) = 7K12(x, l)
1[4 —(—x? 412 = 3(t — x)? 16h* — 2412 (¢ — x)* + (1 — x)*
Konr, 1) =1 |5, =0 x)22—8a1h2—( ( x2)3)+12a1h2 —x) 25 )
T ((t—x)"+4n) ((t—x)"+4n) ((t—x)" +4n)

By using the function-theoretic method of Muskhelishvili (1992) and the properties of hypersingular
integral equations described by loakimidis (1988a,b, 1990), Kaya (1984), Kaya and Erdogan (1987) and
later by Chan et al. (2003), the solution form of U(x) and V(x) in these integral equations, Eqgs. (21a)
and (21b), can be represented by

Vix)=G(x)V1 —x2 (22a)
U(x) = G(x)V'1 — x? (22b)

where Gy(x) and G,(x) are the new unknown bounded functions.
In accordance with Irwin (1957), the singular stress field directly ahead of the crack tip is characterized
by the stress intensity factors in the form

. . ki +ik
Oxx + lo-xy = llm ! il 2

r—0 \/Z

where k| and k, represent the stress intensity factors related to the opening and sliding modes, respectively,
and r is the distance from crack tip.

Utilizing Egs. (22a) and (22b), the stress intensity factors for opening and sliding modes can be evaluated
as

(23)

(1) = tim /02— T, () = 2 tim ) 2, ) (24a)

T otk I l+r

: 2 V(x) 2
“1)=1 2" Do, (x) = 1 = -1 24b
k(=) = lim v(x? = oy (x) = =7 im Z=== =17 G1(=1) (24b)

1+ K1 x=1 /1 =2 1+ K,
_ zlul lm U('x) _ 2:“’1
L+ri—1y/1-x2 1+

The total energy release rate can be written in terms of stress intensity factors as

ky(1) = lim\/(x? — 1)y, (x)

x—1

Gy (1) (24¢)

ky(—1) = lim /(x?> — 1)o,,(x)

x——1

Gy(—1) (244d)

Tf(l + Kl)

G=%+% = m
1

(ki +k3) (25)

The explicit form of the singular integral equations for an interface crack can be derived as the distance,
h approaches zero, i.e., h — 0" in Eq. (19), resulting in
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Wét)[ (cos(at)) g j;)z (cos(ox))da

1 9]
— lim dt vV (r) / oe™
0 0

y—0"

1 3] d( d(’
—y lim [ deU(¥) / e " —— (sin(ar)) - (cos(owx) ) dar
0 d d(

h=0*Jo (o) ox)
! *© d’ d’ w1+ K
+ 7, lim de V(e / e 2 —(cos(at cos do == 26a
72 im ; (1) ; o d(oct)é( (“))d(m)(( (oxx))dot 2 o p(x) (26a)

and

) 1 o) » d/ 1 d/ l
~tim [ @ /0 e g (sn(a0) £ s

1 00 d/’ df
+otim [ deu) / e 2 (in(o) < (sin(o)
0 0

o (o) (o)
—-" hl:rg i dt V(1) /0 ae d((it)[ (cos(at)) %«x)( (sin(ox))da = g 1;;1161 q(x) (26b)

After defining 2 = —y and changing the appropriate variable in these equations, and evaluating the
appropriate infinite integrals, these expressions can be rewritten as

dtV(t)<—(y2_(t_x)2 +(=1)f 2_(t+x)2>

‘ Vot
(t—x)7 42 ((t+x) +2)

(y,— 1) lim
y—0~

N =

0

1 00
- 1“/1 lim dt U(t)/ docoe® (sin (¢ — x) + (—1)" sina(t 4 x)) = rliw p(x) (27a)
27 =07 Jo 0 2 2
and
1 . ! 2 (t—x 2 2 (t+x 2
~(r— 1) lim | deU() ¥)2,(,1)5%)2
2 =0 o ((t=x)"+»?) ((t+x)"+%)
1 oS
w5 im [ v / dooe™ (sin a(t — x) — (—1)" sina(t +x)) = & "L g(x) (27b)
27 =00 o 0 2 2

By performing the limit operation and evaluating the infinite integrals while considering symmetry prop-
erties of U(x) and ¥(x), these equations are further reduced to

1 /1 V(1) dUu 1+ %

— dr —y)— ) =——7——px 28a

T J- (t—X)2 de( ) 2.“1(1_"/2)p( ) 25
and

1 /‘ U(t) dv 141

- dt +y7—(x) =———¢q(x 28b

T (t—x) dx( ) 2#1(1_72)61( ) 250
where y = 132' Knowing that any function can be decomposed into the sum of even and odd functions,

these integral equations are valid for general loading functions.
These integro-differential equations can be combined into the following final form by multiplying Eq.
(28a) by —i and adding to (28b):

Lot ) A .
i [ et = e i) 29)
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where y, = 1, 72 and the auxiliary function, f{x) is defined as

1+
Jfx)=V(x) +iU(x) (30)
Analogous to the solution of Eq. (21), the solution to this integral equation, f{x) can be represented by

GO ()C)

f&) (1—x)*(1+x) G1)
where Go(x) is an unknown bounded function and
| | B . 1 1—y
oc——z—i—lw, [f——z—lw w1thw—ﬂln<l—+y> (32)

According to Rice (1988), the singular stress field ahead of the crack tip is characterized by the complex
stress intensity factor in the form

O + 10, = 11m — (f) v 33
tioy = lim 73 (33)
where r is the distance from crack tip, and k = k; + ik, is the complex interface stress intensity factor. The
characteristic length parameter, ¢, eliminates the dependency of the complex stress intensity factor,
k = ky + ik, on the measuring unit of the crack length.

This definition is equivalent to that of Erdogan and Gupta (1971a,b) for ¢ = a, and the stress intensity
factors, k; and k, become

ki o+ ik = lim(x )7 (x4 1) (o, +i0y,) (34)
By using Eq. (31), these stress intensity factors can be expressed as

1(1) + k(1)) = =2alim(1 —x)*(1 + ) f(x) = —20Gy(1) (35a)

B —
2ug\/1 =7,
1
—————(ki(—1) +ikr(—1)) = —=2f lim (1 —x)" (1 4+x)f(x) = =2BGo(—1) (35b)
219/ 1 =7, -l
As introduced by Erdogan and Gupta (1971a,b), the energy release rate can be related to the stress inten-
sity factors in the form

(t + K1) (s + K244y) (K + k) (36)

T
g ==
2 [T+ ) + (1 + o))

4. Numerical analysis

The complexity of the kernels in Egs. (21) and (29) requires that the singular integral equations be solved
numerically. The solution procedure involves the reduction of the integral equations with Hadamard-type
singularities to a system of linear algebraic equations using the collocation technique introduced by Miller
and Keer (1985) and later extended by Quan (1991) to include the generalized Cauchy kernel, and by Kabir
et al. (1998) to consider logarithmic-, Cauchy-, and Hadamard-type singularities. In this technique, the
quadrature interval [—1, 1] is partitioned into a series of subintervals and the integration points, #; at the
ends and midpoint of each subinterval as shown in Fig. 4. The collocation points, x;, are defined at the mid-
point of two consecutive integration points.



B. Kilic et al. | International Journal of Solids and Structures 43 (2006) 1159-1188 1171

tl:-l I, [ by Ly Ly Loy Loy t2N+1:1
............ —————— e ]
xl xQ 'x2k-] x2k x2\ 1 x’]\

Fig. 4. Discretization of the quadrature interval.

The unknown functions, G,(x) with i = 0, 1, 2, defined by Egs. (22) and (31), are approximated over each
subinterval (#;r—1) < ¢ < tjpr+1y) for k=1, N by quadratic Lagrange interpolation polynomials which are
given as

Gi(t) ~ [(t = tin)* /g — (¢ = tipw) /i) Giaie -1/ 2 + [ = (¢ = tipay)? /) Gy + (£ = tip))* [ F
+ (t = tipy) / hiw)) Giraws1) /2 (37)
where Gi[k] = Gi(t[[k]) and hi[k] = (ti[2k+1] — l,‘[zk,l])/z with i = 0, 1, 2.

4.1. Cohesive crack

In the case of a cohesive crack under shear loading, in order to establish the extent of the contact zone,
the normal tractions on the crack surfaces, p(x) is decomposed as

p(x) = p,(x) + p,(x) (38)

where p,(x) and p,(x) are the known applied normal tractions and unknown normal reactions, respectively.
The normal reactions which cannot positive, i.e. p,(x) < 0, develop if the contact zone between the crack
surfaces occurs. Therefore, the normal reactions prevent the interpenetration between the opposing crack
surfaces. Because the reactions are unknown, p.(x) is approximated over each subinterval
k(tpg < t < tigerry) for k=1, ..., 2N by linear interpolation functions given by

p(x) = 72()Prr + (1 = 2(x)) P (39)
. . X—tif
in which Py = p(tyx) and y(x) = ti[k+1]*[k}i[l¢.
Approximation of the unknown functions, G(x) and G,(x) and the unknown reactions on the crack sur-

faces, p,(x) permit the discretization of Eq. (21) as

| Wil 2N +1 2N,+1
- Z wip (X)) Gy + Z Ky (xj, t:)v19 Gy + Z K12(x;, 1) 0211 Gy
i=1 i=1 i=1
1 + K1 1 + 1
P P =1 2N 40
4."‘1 ( j+1 + ./) + 2#1 a( j) J ’ ) 1 ( )
and
] 2ol 2N +1 2N, +1 s
- D wag()Gay + Y Kor ()i G+ Ko (x5, 1) 2y Gy = T‘I(xj) J=1,...,2N;
i=1 i=1 i=1 !

(41)

in which N; and N, are number of subintervals for unknown functions G(x) and G,(x), respectively. The
singular weight functions, v;z; and wy(x) are given by Kabir et al. (1998). Since this discretization results in
a number of unknowns, Gy, which are two more than the number of equations, two additional constraint
equations become necessary in order to achieve a unique solution to Egs. (40) and (41). However, the
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nature of this solution method does not introduce any additional constraint equations based on the physics
of the problem. As suggested by Kabir et al. (1998), the necessary additional constraint equations are ob-
tained by multiplying the integral equations by v'1 — x? and integrating over x can be expressed in the form

/ldtV() /ldtV()E“() /ldtV()Kz() P (42)

/dtU /dtV VKo (¢ /dtV VK (t (43)

in which K;(¢), p(x) and g(x) are defined as

t>:/1 dxKi(x, )Vl —x> i, j=1,2 (44)
p= 122 / 0.0+ p.O)VT =R (45)
q:lztf‘/ degVT =2 (46)

These additional constraint equations (42) and (43) are also discretized as

2N +1 Nu+1 2N

2
= > oG+ Y Y Kult)unGuy = Y_bI'Pi+ Pt + D, (47)
i=1

n=1 i=1 i=1

]

and
2N+1 2 2Nl
- Z Oy Gapi) + Z Ko (t:)0ni) Gy = @ (48)
i=1 n=1 i=1
where p,(x) is approximated in the same manner as before, Eq. (39), and b,[l ,bl[' and p, are defined by
1 Xit1
b[l 2—;’{1 dxy(x)vV1 —x2 (49)
1 X
1 Xit1
B = ;ﬂ’“ dv (1 — 7(x))VT =22 (50)
1 i
_a—lJrKl/dx Vi@ (51)
2p

in which b,- and b,- can be evaluated exactly.
The discrete form of the singular integral equations and constraint equations can be cast into the form

AJ,GI—BJ,P,:g l,]zl,,N (52)
in which N is equal to 2(N; + N, + 1). The unknown vectors can be written as

G' = {Gij, ... Gipny1), Gopt)y - -+ Gopva )}

i

and

P' ={Pi,...,Pw,1,0,...,0}
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In the solution of Eq. (52), the unknown vectors have to satisfy the constraint equation arising from the
presence of contact zones. This constraint equation can be expressed as

Vi=V({t)=0 if P,=p(t;) <0 (53a)
and
Pi=p,(t:)=0 if V;=V() =0 (53b)

This constraint equation ensures that there is no interpenetration by enforcing the opening displacements to
be equal to zero due to the presence of compressive normal reactions along the contact zone. The tensile
reactions are enforced to be zero for positive crack opening displacement. As a result of this constraint
equation, either the crack opening displacement, V{t,), or the reaction, p,(¢;), is equal to zero at every inte-
gration point i depending on its value. Therefore, the solution to Eq. (52) requires an iterative scheme. The
solution procedure starts with assuming either P, =0 or V; =0 at every integration point.

With the assumed values of P; or V;, Eq. (52) having equal number of equations and unknowns can be
solved directly. This linear system of equations is solved continuously by updating the status of every inte-
gration point after each solution until convergence is achieved. The status at each integration point is up-
dated by checking Eq. (53) in which, if the constraint condition is not satisfied, the status of that point is
updated for the next step by interchanging the value of P, =0 with V; =0 if P; is positive and V; = 0 with
P; =0 if V;is negative.

4.2. Interface crack

In the case of an interface crack, the approximation of the unknown function Gy(x) in Eq. (31) allows
discretization of Eq. (29) as

| Dot ) Iy i B+ oc+[3 .
s woj (x) Gopy + D, hi Gy + ) J E B, Gojrsm
i - 0[]( j) 0[] (1 _x]) (1 +x/)[i ; J T O[L+m] /(1 _x/) 1+ﬁ 07+
Pj+l +Pj 1 .
4ﬂ0i + 2:“0 (q(xj) lpa(xj)) ( )

where I and B,, are given by Kabir et al. (1998) and 4;, L and D,, are defined in Appendix A. Similar to the
discretization of equations for a cohesive crack, this discretization also results in a number of unknowns,
Gojxy which are one more than the number of equations. Therefore, the necessary additional constraint
equation is introduced by multiplying the integro-differential equation by (1 — x )3/ % and integrating over
x, and after performing the appropriate algebraic manipulations leads to

/imﬁmﬂn:g (55)

1

where H(t) = 3ptv/T— 2 +i3(1/2 = £) and g = 5& [1 dx(g(x) — ip(x))(1 = x*)*".
This additional constraint equation is also dlscretlzed as

2Ng+1

> H(t)voyGoy = & (56)
=1
in which g is defined by

g=g [ axlg)~ip )1 - (57)
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The discrete form of the singular integral equation and constraint equation can be cast into the form
A;Gi=g, i,j=1,...,N (58)

where N is equal to 2Ny + 1 and the unknown vector is in the form of
G" = {Gow,- - Gopwyer} (59)

In the presence of shear loading, the direct application of the approach to determine the compressive
normal reactions over the contact zone and the extent of the contact zone simultaneously results in extreme
numerical oscillations in the crack opening displacement. However, the solutions to both the normal reac-
tion and the opening displacement lead to acceptable results in an average sense indicating that the oscil-
lations in the solution is primarily due the oscillatory behavior of the unknown function. This is further
validated by the fact that the frequency and magnitude of the oscillations amplify with increasing number
of subintervals.

In order to alleviate and possibly eliminate this extreme oscillation in numerical results, the solution
method utilizes a Cauchy-type singular integral equation obtained by integration by parts of Eq. (29).
The singular integral equations with both Hadamard- and Cauchy-type singularities are then solved con-
secutively in an iterative manner to determine the normal reactions over the contact zone and the extent of
the contact zone. By using the conditions f{—1) = f{1) = 0, the Cauchy-type singular integral equation is
obtained as

119 1 .

- p0(x) = — (q(x) — 60

= [1 = IR =7 - (a() i) (60)
in which ¥(x) = % = &0 4 U0

Utilizing the function-theoretic method of Muskhelishvili (1992), the solution form of ¥(x) can be rep-
resented by

by~ P

(1—x)"(1+x)™"

where ¢(x) is an unknown bounded function and « and f are defined as in Eq. (32). The solution to Eq. (60)
contains one arbitrary constant which is determined by imposing the condition of single-valuedness of dis-
placements as

/ () di=0 (62)

Although the exact solutions to singular integral equations with Cauchy-type singularity exist for certain
simple forms of p(x) and ¢(x), the unknown normal tractions requires that the Cauchy-type singular inte-
gral equation be solved numerically subjected to the appropriate contact zone conditions. As described in
the solution of Hadamard-type singular integral equations, the unknown function ¢(x) is approximated
over each of the subinterval by using quadratic Lagrange interpolation polynomial as given in Eq. (39).
With the discretized form of the unknown function ¢(x), Egs. (60) and (62) can be rewritten as

(61)

AR ) 3 . .
s wiy () + - - Bu®pim = +(q(x;) —ip,(x;)) j=1,...,2N
w2 MO0t T 2 B = 55 5 (00~ ) :

(63)
2No+1

> i)y =0 (64)
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in which singular weight functions, Vi) and Wiy and the Lagrange coefficients, B,,, and parameter I can be
found in Kabir et al. (1998).

The discrete forms of Cauchy-type singular integral equation, Eq. (63) and single valuedness condition,
Eq. (64) are cast into the matrix form as

ASH; —BSPi =g, ij=1,....N (65)
where N is equal to 2Ny + 1 and unknown vectors are in the form of

o' = {4)[1]7 Sy ¢t[2Nl>+1]} (66a)
and

P' = {P),...,Py,,0} (66b)
This constraint condition arising from the presence of a contact zone is given by

%V(xj) =0 if P=p.(x;) <0 (67)

This condition is applied in an average sense along the contact zone as
L+l
H(x)dx =0 (68)

tj
whose discrete form can be written as
Re{vy(x;) ¢y + vy (67) @y} = 0 (69)

Since neither the normal reactions over the contact zone and the extent of the contact zone are not
known a priori, Eqgs. (58) and (65) are solved through an iterative scheme. The solution procedure starts
with the determination of the initial estimate for the extent of contact zone by solving Eq. (58) in the ab-
sence of unknown normal tractions. With the initial estimate of the contact zone, Eq. (65) is then solved for
the compressive reactions over the contact zone. However, the reactions computed by solving Eq. (65) have
an oscillatory behavior. This behavior is corrected by smoothing the reactions along the predicted contact
zone. The smoothing of reactions is performed by calculating the reactions at integration points and pro-
jecting back onto the collocation points by using linear approximation given in Fig. 5. With the smoothed
normal reactions over the contact zone, Eq. (58) is the resolved for the contact zone. This procedure is re-
peated by continuously updating the extent of the contact zone according to Eq. (67) until convergence is
achieved.

P

computed p,() -

back pfojeéted p(x)

X3 L

Lo X by X, @ X b X L X L

7 i i}

Fig. 5. Schematic for removing numerical noise from computed reactions.
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5. Numerical results

The numerical results concern both the uniform pressure and uniform shear loading on the crack sur-
faces. Poisson’s ratios for the materials are specified as vi = 0.35 and v, = 0.3, and the ratio of their shear
moduli is specified as u»/u; = 20. The validity of the present analysis results is established by comparison
against the finite element predictions.

5.1. Uniform pressure

In the solution of the integral equations for uniform pressure loading, the number of subintervals asso-
ciated with each unknown functions is chosen as 300 and 500 for the cohesive and interface crack config-
urations, respectively. In the case of the cohesive crack, the crack opening displacements are symmetric and
the sliding displacements are anti-symmetric with respect to the y-axis as expected because of the presence
of symmetry in geometry. As shown in Figs. 6 and 7, the present analysis predictions are in remarkable
agreement with the finite element results for /a = 0.5. As presented in Table 1, the stress intensity factor
for the opening mode decreases as the crack approaches the interface from soft material side. However, the
stress intensity factor for the opening mode increases if the crack is approaching the interface from the stiff
material side as presented in Table 2. The stress intensity factor associated with the sliding mode increases
as the crack approaches the interface either the soft or stiff material side.

0.7
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Fig. 6. Opening displacement for a cohesive crack for h/a =0.5.
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Table 1
Normalized stress intensity factors and energy release rates for a pressurized crack (uo/p; =20, vy =0.35, v»=10.3, p(x) = —py,
q(x) =0)
hla 1+ Ky 1+ K m
2Py (1) 2 py ool (1+K1)p20g(1)
0.2 0.7424 0.1272 0.5674
0.3 0.7583 0.1118 0.5874
0.4 0.7718 0.1010 0.6059
0.5 0.7841 0.0923 0.6233
0.6 0.7955 0.0846 0.6400
0.7 0.8064 0.0773 0.6563
0.8 0.8171 0.0704 0.6725
0.9 0.8275 0.0637 0.6888
1.0 0.8377 0.0573 0.7051
1.5 0.8840 0.0325 0.7825
2.0 0.9178 0.0185 0.8427
2.5 0.9404 0.0111 0.8845
3.0 0.9555 0.0071 0.9130

In the case of an interface crack, the opening displacement is also symmetric and the sliding displacement
is anti-symmetric with respect to y-axis as shown in Figs. 8 and 9. As shown in Fig. 10 in which regions S}
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Table 2
Normalized stress intensity factors and energy release rates for a pressurized crack (uo/u; = 1/20, vi =0.3, v, = 0.35, p(x) = —po,
q(x) =0)

ha 1+ 14K .
214py L 214po 2D (I + )P% #0

0.2 2.5446 0.8383 7.1778

0.3 2.3413 0.7055 5.9793

0.4 2.1215 0.5626 48174

0.5 1.9287 0.4415 3.9150

0.6 1.7732 0.3476 3.2651

0.7 1.6504 0.2764 2.8001

0.8 1.5531 0.2224 2.4616

0.9 1.4753 0.1809 2.2093

1.0 1.4123 0.1487 2.0168

1.5 1.2255 0.0632 1.5059

2.0 1.1398 0.0315 1.3002

2.5 1.0943 0.0176 1.1978

3.0 1.0675 0.0107 1.1397
1.2

2y,
52 V(1)
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o
(N}

o¥ ¥+ 7——

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
Normalized distance along crack interface, x/a

Fig. 8. Opening displacement for an interface crack.

and S, represents soft and stiff material sides, respectively, the energy release rate decreases as the crack
approaches the interface from the soft material side and it increases if the crack is in the stiff material side.
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Fig. 9. Sliding displacement for an interface crack.

However, the energy release rate for a crack approaching the interface from the soft material side or stiff
material side is asymptotically approaching the value associated with that of the interface crack. Based on
the energy release rate criterion, the crack in the soft material away from the interface reaches the critical
energy release rate value before the crack close to the interface under the same loading conditions. Thus, the
crack away from the interface is more critical than the crack close to the interface if the crack is in the soft
material. Based on a similar observation, the crack close to the interface is more critical than the crack away
from the interface if the crack is in stiff material.

5.2. Uniform shear

In the solution of the integral equations for uniform shear loading, the number of subintervals
associated with each unknown function is chosen as 500 and 1000 for the cohesive and the interface
crack configurations, respectively. Although the applied loading is anti-symmetric with respect to the
y-axis, results do not exhibit any symmetry because of the existence of the contact zone as shown in
Figs. 11-14.

In the case of a cohesive crack, the contact zone and the crack opening displacements are predicted with-
out any numerical oscillations, and compare well with the finite element predictions as shown in Figs. 11
and 12. However, the oscillatory behavior of the singular integral equation associated with the interface
crack leads to an oscillatory crack opening and sliding behavior as shown in Figs. 13 and 14. Although
these results do not appear to be exactly satisfied, their general (smoothed) behavior also compares well
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Fig. 10. Variation of energy release rate for a crack under uniform pressure.

with those of the finite element predictions. Furthermore, the length of the contact zone is also in remark-
able agreement with the finite element analysis predictions as shown in Fig. 16.

As a result of the contact zone, the stress intensity factors do not have the same magnitudes at the
crack tips. Because of the contact zone, the opening mode stress intensity factor is equal to zero at
the crack tip where the contact zone occurs. The sliding mode stress intensity factor at contact side of
the crack tip is slightly larger than the one at crack tip where no contact zone exists as presented in
Tables 3 and 4. However, the energy release rates are similar at both ends of the crack as shown in
Fig. 15. The energy release rate for a crack approaching the interface from the soft material side or stiff
material side is asymptotically approaching the value associated with that of the interface crack as shown
in Fig. 15. Similar to the crack under uniform pressure loading, the crack away from the interface is
more critical than the crack close to the interface if the crack is in the soft material. On the contrary,
the crack close to the interface is more critical than the crack away from the interface if the crack is
in the stiff material side.

As shown in Fig. 16, the length of the contact zones obtained from the singular integral equations and
finite element analysis are in remarkable agreement. However, the cracks approaching the interface from
the soft material side and the stiff material side do not lead to a common value representative of an interface
crack. As the crack approaches to the interface from the stiff material side, the interface behaves like a
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Fig. 11. Opening displacement for a cohesive crack under uniform shear loading for 4/a = 0.5.

traction-free boundary. Therefore, the contact zone length diminishes because the resistance to crack open-
ing decreases as the crack approaches the interface. On the other hand, when the crack approaches to the
interface form the soft material side, the interface behaves like a rigid boundary which leads to an increase
in the contact zone length.

6. Conclusions

This study examines the behavior of the energy release rate as the cohesive crack located parallel to the
interface approaches the interface from either the soft or the stiff side of the interface while ensuring no
interpenetration. The limiting value of the energy release rate is established by considering an interface
crack. In order to impose the appropriate constraint conditions on the crack opening displacements, the
solution method treats both the crack opening and sliding displacements as primary unknowns. The crack
opening displacements are physically more meaningful and readily validated against the finite element anal-
ysis predictions. As the cohesive crack approaches the interface from either side of the interface, the energy
release rate approaches to that of the interface crack. This is indicative of a continuous behavior for the
energy release rate, and that the interface crack is a natural limit of a cohesive crack. However, the length
of contact zone on the crack surfaces under uniform shear loading does not approach to that of the inter-

face crack. The results of the present analysis are in remarkable agreement with the finite element
predictions.
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Appendix A

The explicit form of the coefficients in Eq. (11) are given by

A11 = (Kl — 20!;1)611672“111413

L et (U4 402 = k) + (16 + 00 = 402)ty) — sy (1 (14 K1)y + 4020 (1, = 1))

20(py + re2pty) (i + K114)
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Fig. 13. Opening displacement for an interface crack under uniform shear loading.

The parameters, D,,, h; and L in Eq. (54) are dependent on the degree of approximation dictated by the
value of M which is chosen to be 5 for higher order approximation. Regardless of the order of approxima-
tion, the discretization results in a uniform length for each subinterval, and the spacing between the inte-
gration points can be expressed as
hj=1t;+1-1

The parameters, L and D,, are defined by using Lagrange’s differentiation formulas given by Abramowitz
and Stegun (1965), and their explicit form for M =5 is expressed as

0 j=1

j—2 j<Npand j+#1

L:
j—3 j = Np and j # 2N,
ONo—4 j=2N,
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Dy(h) =
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Fig. 14. Sliding displacement for an interface crack under uniform shear loading.

Table 3
Normalized stress intensity factors and energy release rates for a crack under uniform shear (us/p; = 20, v; = 0.35, v, = 0.3, p(x) =0,
4(x) = —qo)

hla 1+ 5 1+ T+, ILtm, am 4 .
2y Y 2 2V 2 Y 2 2V (1 + 1)) ) (1+x1)q3 #-1)
0.2 0.1475 0.8028 0.0000 0.8163 0.6662 0.6662
0.3 0.1339 0.8368 0.0000 0.8474 0.7181 0.7181
0.4 0.1236 0.8627 0.0000 0.8715 0.7596 0.7596
0.5 0.1142 0.8823 0.0000 0.8897 0.7915 0.7915
0.6 0.1049 0.8970 0.0000 0.9031 0.8157 0.8157
0.7 0.0957 0.9082 0.0000 0.9133 0.8341 0.8341
0.8 0.0865 0.9171 0.0000 0.9211 0.8485 0.8485
0.9 0.0776 0.9243 0.0000 0.9275 0.8603 0.8603
1.0 0.0692 0.9304 0.0000 0.9329 0.8704 0.8704
15 0.0377 0.9525 0.0000 0.9532 0.9087 0.9087
20 0.0211 0.9667 0.0000 0.9669 0.9349 0.9349
25 0.0125 0.9759 0.0000 0.9760 0.9526 0.9526

3.0 0.0079 0.9820 0.0000 0.9821 0.9644 0.9644
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Table 4
Normalized stress intensity factors and energy release rates for a crack under uniform shear (uo/p; = 120, v; = 0.3, v, = 0.35, p(x) =0,
q(x) = —qo)

hla Lrmy o Lrmy Lrrg L PR g gy
2190 (1) 21,9, (1) 214190 1= 219, ) (14 x1)q} ( (1+x1)q3
0.2 0.0000 1.2843 0.4259 1.2117 1.6494 1.6495
0.3 0.0000 1.1971 0.3789 1.1356 1.4330 1.4330
0.4 0.0000 1.1537 0.3333 1.1045 1.3309 1.3310
0.5 0.0000 1.1289 0.2887 1.0914 1.2744 1.2744
0.6 0.0000 1.1130 0.2476 1.0852 1.2389 1.2389
0.7 0.0000 1.1018 0.2112 1.0813 1.2139 1.2139
0.8 0.0000 1.0930 0.1799 1.0781 1.1946 1.1946
0.9 0.0000 1.0856 0.1532 1.0747 1.1786 1.1786
1.0 0.0000 1.0792 0.1307 1.0712 1.1646 1.1646
1.5 0.0000 1.0545 0.0618 1.0527 1.1120 1.1120
2.0 0.0000 1.0382 0.0323 1.0377 1.0778 1.0778
2.5 0.0000 1.0275 0.0184 1.0274 1.0558 1.0558
3.0 0.0000 1.0205 0.0113 1.0204 1.0414 1.0414
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Fig. 15. Variation of energy release rate for a crack under uniform shear.
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Fig. 16. Length of the contact zone under constant shear loading.
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