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Abstract

Solution of Cauchy-type singular integral equations permits the evaluation of the fracture parameters at the crack
tips very accurately. However, it does not permit the determination of the crack opening and sliding displacements
while ensuring no crack surface interpenetration unless the location of the contact zone is known a priori. In order
to circumvent this shortcoming, this study presents a solution method based on the Hadamard-type singular integral
equations to obtain the crack opening and sliding displacements directly while enforcing the appropriate conditions
to prevent interpenetration. Furthermore, the crack opening displacements are physically more meaningful and readily
validated against the finite element analysis predictions. The numerical solutions of the hypersingular integral equations
provide not only crack opening and sliding displacements directly but also the stress intensity factors and energy release
rates. Also, the behavior of the energy release rate is examined as the cohesive crack located parallel to the interface
approaches the interface from either the soft or the stiff side of the interface. The limiting value of the energy release
rate is established by considering an interface crack. As the cohesive crack approaches the interface from either side
of the interface, the energy release rate approaches to that of the interface crack. However, the length of contact zone
between the cohesive crack surfaces under uniform shear loading does not approach to that of the interface crack.
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1. Introduction

In the construction of aircraft and space structures or electronic devices, the fusion process and adhesion
are the primary means for joining different materials. However, the interface between dissimilar materials is
always prone to imperfections. If the bond is not sufficiently strong, it delaminates along the interface. If the
bond is too strong to delaminate, the cracking (cohesive failure) occurs in the weakest of the adjoining
materials. Within the realm of linear elasticity theory, the stress states associated with a cohesive crack
embedded in a homogeneous medium and an interface crack are different in nature. Therefore, the initial
location of the crack tip plays a vital role in the analysis of dissimilar materials having a crack. If the crack-
ing is of cohesive type as shown in Fig. 1, the well-established square root singularity prevails at the crack
tips. However, the presence of a crack along the interface induces an oscillating stress singularity with a
very rapid reversal of sign as the tip of the crack is approached according to Williams (1959). As pointed
out by England (1965), Erdogan (1965), Rice and Sih (1965) and Malyshev and Salganik (1965), this pecu-
liar oscillatory singularity leads to the wrinkling of the crack faces and overlapping (interpenetration) of the
material. England showed that this kind of oscillatory singularity is physically inadmissible but is confined
to a very small region near the crack tips. Erdogan (1965) suggested that this interpenetration is not signif-
icant in practical terms because it is confined to a very small region. This situation is analogous to the
homogeneous case wherein the unbounded stresses are physically impossible and mathematically anoma-
lous. However, they provide useful information when the extent of their singular behavior is contained
within a small region.

To correct the physical inadmissibility of crack surface interpenetration, Comninou (1977) addressed the
apparent physical inconsistency of the oscillatory stress field by using a model that imposed contact zones
ahead of the crack tips. Subjected to a tensile loading, the contact zone near the crack tip is found to be on
the order of 10�4 and that the oscillatory character of the stress field disappears. Also, only the shear stress
is singular ahead of the crack tip, while the normal stress is tensile but finite. However, the global nature of
the stress field is very close to that of a fully opened crack which possesses an oscillatory singularity. There-
fore, the oscillatory characteristic can be considered an artifact of the linear elastic analysis and confined to
a region extremely close to the crack tip. Atkinson (1977, 1982) concluded that the solutions with an oscil-
latory stress field are valid only away from the crack tip in the sense of asymptotic expansions. Thus, the
solutions using the oscillatory character adequately model the near and far field stresses outside the region
of interpenetration.

While the crack surface interpenetration can be removed by imposing contact zones ahead of the crack
tips, the singular stress field becomes purely anti-symmetric about the interface crack and consequently
crack propagation is restricted only to the sliding mode. Although it is reasonable to expect sliding mode
Fig. 1. Schematic for the cohesive crack with contact zone.



B. Kilic et al. / International Journal of Solids and Structures 43 (2006) 1159–1188 1161
dominance when the material moduli differ significantly, it is unlikely that crack propagation under tension
loading abruptly changes from opening mode in the case of a cohesive crack located parallel to an interface
to a pure sliding mode in the case of an interface crack upon the introduction of a simple discontinuity in
moduli.

Subjected to combined tension and shear loading, Comninou and Schmueser (1979) and Simonov (1990)
found that the extent of contact zone varies at the crack tips. At one end, the region of contact zone is al-
ways small; however, the region of contact zone at the other end may be large depending on material prop-
erties and the ratio of applied normal stress to shear stress. When the applied loading is dominated by the
shear stress, the contact zone becomes significant. In the extreme case of pure shear loading, the contact
zone may be as large as half of the crack length.

In determining the stress intensity factors for an interface crack with an oscillatory behavior, the previ-
ous analyses assume that the crack surfaces fully open without any contact between the opposing faces.
Although this type of analysis is wrong at the scale of the contact zone, it provides acceptable stress inten-
sity factors to characterize the near tip stress state as long as the contact zone is much smaller than crack
length. If the contact zone is substantial, then this type of analysis becomes invalid.

There have been many discussions on its unusual local characteristics of an interface crack throughout
the years. Its validity in a variety of situations has been clarified by Rice (1988). The singular stress field
directly ahead of the crack tip is characterized by the complex stress intensity factor whose real and imag-
inary parts no longer represent the usual definitions of the stress intensity factors for the opening and shear-
ing modes of a crack in a homogeneous material. There have been varying definitions of the stress intensity
factor for the purpose of characterizing the near tip field of an interfacial crack. Most of these definitions
differ from one another only by a phase factor (Rice and Sih, 1965; Erdogan, 1965; Rice, 1988). The inter-
face crack induces both opening and shearing mode behavior even under single mode of loading. The ten-
sile and shear effects near the crack tips are intrinsically inseparable.

A more in depth treatment of interfacial fracture mechanics for isotropic materials is given by Rice
(1988) and Suo and Hutchinson (1990) among others can be found in the review article by Hutchinson
and Suo (1992). By introducing a characteristic length parameter, Rice (1988) eliminated the dependency
of the complex stress intensity factor on the measuring unit of the crack length. However, the choice of
the length parameter still remains ambiguous.

In order to remove the ambiguities associated with the characterization of an interface crack, Malyshev
and Salganik (1965) considered the behavior of the total strain energy release rate in terms of the complex
stress intensity factor. The strain energy release rate is well behaved even though the stress and displace-
ment fields possess the oscillatory behavior. As observed by Mulville et al. (1976), the strain energy release
rate remains relatively constant as the crack propagates along the interface.

In the previous analyses, the interface was idealized as a perfect bond line of zero thickness; however, the
oscillatory singular behavior would not arise in practice because the crack tip cannot be part of two differ-
ent materials at the same time. An alternative to an interface crack is the examination of a cohesive crack,
free of oscillations and interpenetration, as it approaches the interface. Erdogan (1971) considered a
bonded dissimilar material containing a crack parallel to the interface under the assumption that the crack
surfaces fully open without any contact between the opposing crack faces. Although this model removes the
interpenetration due to the oscillatory behavior of stress and displacement fields arising from material mis-
match, it still leads to unacceptable interpenetration when the applied loading is dominated by the shear
stress (Comninou, 1977; Erdogan and Wu, 1993). Atkinson (1977) also removed the interpenetration by
introducing an intervening material between the two dissimilar materials comprising the original interface.
Erdogan (1997) also discusses the mechanics and modeling issues concerning the interface cracks, and pre-
sents an extensive review.

Although the limiting value of the energy release rate can be investigated as the cohesive crack of non-
oscillating character approaches the interface, there is no smooth solution method yielding transition from
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one to the other. The solution method utilizing integral transformation techniques leads to a system of sin-
gular integral equations of the first kind for the cohesive crack. On the other hand, as the cohesive crack
approaches the interface, the system of singular integral equations becomes one of the second kinds. In
deriving the singular integral equations under the assumption that the crack fully opens, while imposing
the continuity conditions along the interface and the prescribed tractions on the crack surfaces, the deriv-
atives of the crack surface displacements serve as primary unknowns leading to Cauchy-type singular inte-
gral equations. Solution of these singular integral equations can be achieved by techniques developed by
Erdogan (1969) and Erdogan and Gupta (1972) yielding the stress intensity factors. However, these solu-
tions suffer from the interpenetration of opposing crack surfaces under the applied shear loading. Because
of the nature of the primary unknowns in the singular integral equations, all of the previous studies con-
cerning interface or cohesive cracks considered the calculation of the stress intensity factors or the energy
release rate rather than the crack surface displacements.

In order to eliminate the interpenetration of the opposing crack surfaces, this study considers the crack sur-
face displacements as primary unknowns in the derivation of the singular integral equations leading to Had-
amard-type singularity. Thus, the present approach is capable of enforcing the appropriate conditions to
prevent interpenetration of crack surfaces arising from the applied tractions. The crack surface displacements
are physically more meaningful and easy to compare with finite element solutions which fail to provide accu-
rate stress intensity and energy release rate without resorting to a refined mesh or a special crack-tip element.

Knowing the crack surface displacements, the energy release rate can be calculated based on the Griffith
criterion that involves work done per unit depth by the applied load acting through the crack surface dis-
placements. However, this method of calculation intrinsically assumes that the crack extension is self-
similar which is erroneous in the presence of both the opening and sliding modes. Therefore, the total
energy release rate defined by Malyshev and Salganik (1965) including the presence of both opening and
sliding modes is computed based on the concept of crack closure introduced by Irwin (1957). Majority
of the previous crack configurations concern symmetric tensile loading resulting in a gap between the crack
faces. However, an interpenetration develops between the crack faces under anti-symmetric loading without
the imposition of appropriate constraints at the crack faces. Regardless of the nature of the applied loads,
the interface cracks can never be fully open.

Similar to the investigation by Erdogan and Joseph (1988), this study examines the behavior of the en-
ergy release rate as the cohesive crack located parallel to the interface approaches the interface from either
side, and its limiting value is established by considering an interface crack. Unlike the previous study by
Erdogan and Joseph (1988), the present study imposes the appropriate constraints to prevent interpenetra-
tion of the crack surfaces by considering the crack surface displacements as primary unknowns in the der-
ivation of the singular integral equations. The description of the geometry and the crack configurations are
shown in the next section. The solution method and the numerical analysis of the singular integral equa-
tions with Hadamard-type singularity are described in the subsequent sections. The numerical results con-
cern the energy release rate calculations and the crack surface displacements.
2. Problem statement

As shown in Fig. 2, a crack located parallel to the interface of dissimilar materials is considered under
symmetric and anti-symmetric tractions acting on the crack surfaces while preventing crack surface inter-
penetration. This crack configuration was previously investigated by Erdogan (1971) under the assumption
of a fully open crack for both type of loading conditions leading to singular integral equations with
Cauchy-type singularity. As a special case of this configuration, an interface crack shown in Fig. 3 is also
considered to establish the limiting values of the strain energy release rate as the cohesive (homogeneous)
crack approaches the interface.



Fig. 2. Crack geometry and notation for a cohesive crack.

Fig. 3. Crack geometry and notation for an interface crack.
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The crack configuration with respect to the interface of two dissimilar materials is described in Fig. 2.
The crack with a length of 2a, situated at a distance h from the interface lies along the x-axis of the Carte-
sian coordinate system (x, y) whose origin is located at the crack center. The other length parameters are
normalized with respect to half of the crack length which is taken to be unity, i.e., a = 1, without any loss of
generality. The geometry possesses symmetry with respect to x = 0 plane. As shown in Fig. 2, the material
on the upper part of the interface is divided into two regions denoted by S1 and S3. The material between
the planes of crack and interface is represented by region, S1. The material on the upper part of the crack is
in region, S3. The material on the lower part of the interface occupies the region denoted by S2. The mate-
rial in each region is isotropic, elastic, and homogeneous, with shear moduli, l1 = l3, l2 and Poisson�s
ratios, m1 = m3, m2.

The displacement equilibrium equations in each region are
lir2ui þ ðki þ liÞ
o

ox
oui
ox

þ ovi
oy

� �
¼ 0 ð1aÞ

lir2vi þ ki þ lið Þ o

oy
oui
ox

þ ovi
oy

� �
¼ 0 ð1bÞ
where ui and vi are the components of the displacement field along the x and y directions, and ki is Lame�s
constant with (i = 1, 2, 3). The subscripted (or superscripted) i refers to the regions. Using the stress–strain
and kinematic relations, the stress components can be expressed as
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rðiÞ
xx ¼ li

ji � 1
ð1þ jiÞ

oui
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þ ð3� jiÞ
ovi
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� �
ð2aÞ

rðiÞ
yy ¼ li

ji � 1
ð1þ jiÞ

ovi
oy

þ ð3� jiÞ
oui
ox

� �
ð2bÞ
and
rðiÞ
xy ¼ li

oui
oy

þ ovi
ox

� �
ð2cÞ
in which ji = 3 � 4mi and ji ¼ 3�mi
1þmi

for plane strain and stress conditions, respectively.
Along the interface plane of y = �h between regions of S1 and S2, the continuity of displacement and

traction components requires that
u1ðx;�hÞ ¼ u2ðx;�hÞ 0 < jxj < 1 ð3aÞ
v1ðx;�hÞ ¼ v2ðx;�hÞ 0 < jxj < 1 ð3bÞ

rð1Þ
yy ðx;�hÞ ¼ rð2Þ

yy ðx;�hÞ 0 < jxj < 1 ð3cÞ
rð1Þ
xy ðx;�hÞ ¼ rð2Þ

xy ðx;�hÞ 0 < jxj < 1 ð3dÞ
The applied tractions on the upper and lower crack surfaces of y = 0+ and y = 0� planes, respectively,
are specified as
lim
y!0�

rð1Þ
yy ðx; yÞ ¼ lim

y!0þ
rð3Þ
yy ðx; yÞ ¼ pðxÞ 0 < jxj < a ð4aÞ

lim
y!0�

rð1Þ
xy ðx; yÞ ¼ lim

y!0þ
rð3Þ
xy ðx; yÞ ¼ qðxÞ 0 < jxj < a ð4bÞ
in which the applied normal, p(x) and shear, q(x) tractions have the properties of
pðxÞ ¼ ð�1Þ‘pð�xÞ and qðxÞ ¼ ð�1Þ‘þ1qð�xÞ ð5Þ

where the parameter, ‘ = 0 and ‘ = 1 denotes the symmetric and anti-symmetric tractions on the crack sur-
faces, respectively. The continuity of displacement and traction components along the crack plane of y = 0
requires that
lim
y!0�

u1ðx; yÞ ¼ lim
y!0þ

u3ðx; yÞ a 6 jxj < 1 ð6aÞ

lim
y!0�

v1ðx; yÞ ¼ lim
y!0þ

v3ðx; yÞ a 6 jxj < 1 ð6bÞ

lim
y!0�

rð1Þ
yy ðx; yÞ ¼ lim

y!0þ
rð3Þ
yy ðx; yÞ a < jxj < 1 ð6cÞ

lim
y!0�

rð1Þ
xy ðx; yÞ ¼ lim

y!0þ
rð3Þ
xy ðx; yÞ a < jxj < 1 ð6dÞ
The interpenetration of the crack surfaces is prevented by introducing a contact zone along which crack
opening is not permitted by imposing the condition of
v1ðx; 0þÞ ¼ v3ðx; 0�Þ c0 6 x 6 c1 ð7Þ

in which c0 is the unknown distance from the center of crack where the contact zone starts, and c1 is the
unknown distance from the center of crack where the contact zone ends. Therefore, d = c1 � c0 specifies
the extent of the contact zone as shown in Fig. 1. Finally, the far field regularity conditions require that
ui; vi ! 0 for x ! 1 and y ! 1 ð8Þ



B. Kilic et al. / International Journal of Solids and Structures 43 (2006) 1159–1188 1165
The mathematical boundary value problem then reduces to the determination of the non-trivial stress
field induced by the applied tractions on the crack surfaces. The solution to this problem provides the crack
opening and sliding displacements as well as the stress intensity factors and the energy release rates at the
crack tips. As a special configuration, an interface crack is also considered to establish the limiting values
for the energy release rate as the cohesive crack approaches the interface. Because the general loading can
be expressed in terms of the combination of symmetric and anti-symmetric loads, the crack surfaces are
subjected to either symmetric or anti-symmetric loads.
3. Solution procedure

The solution procedure involves the use of integral transformation techniques appropriate for mixed
boundary value problems. The displacement components in each region are represented by
uiðx; yÞ ¼
2

p

Z 1

0

/iða; yÞ
d‘

dðaxÞ‘
ðsinðaxÞÞda ð9aÞ

viðx; yÞ ¼
2

p

Z 1

0

wiða; yÞð�1Þ‘ d‘

dðaxÞ‘
ðcosðaxÞÞda ði ¼ 1; 2; 3Þ ð9bÞ
where /i(a, y) and wi(a, y) (i = 1, 2, 3) are the unknown auxiliary functions, and ‘ = 0 and ‘ = 1 correspond
to symmetric and anti-symmetric tractions on the crack surfaces, respectively.

Substitution from these integral representations into the displacement equilibrium equations, Eq. (1)
leads to a pair of second order, ordinary differential equations in each region as
li
o2/i

oy2
� ðki þ 2liÞa2/i � ð�1Þ‘aðki þ liÞ

owi

oy
¼ 0 ð10aÞ

ð�1Þ‘aðki þ liÞ
o/i

oy
þ ðki þ 2liÞ

o2wi

oy2
� lia2wi ¼ 0 ð10bÞ
The general solution to these systems of equations can be readily written as
/i

wi

� �
¼ Ai1

1

ð�1Þ‘
� �

þ Ai2
1

ð�1Þ‘
� �

y þ
0

ji=að�1Þ‘
� �� �� �

e�ay þ Ai3
1

ð�1Þ‘þ1

� ��

þAi4
1

ð�1Þ‘þ1

� �
y þ

0

ji=að�1Þ‘
� �� ��

eay
ð11Þ
where Aij(a) (i = 1, 2, 3 and j = 1, 2, 3, 4) are the unknown coefficients to be determined from the boundary
and continuity conditions.

Invoking the far field regularity conditions, Eq. (8) permits the determination of
A33 ¼ A34 ¼ A21 ¼ A22 ¼ 0 ð12Þ

Enforcing the continuity of tractions, Eqs. (6c) and (6d) along the crack plane of y = 0 between regions S1

and S3, and the continuity conditions, Eq. (3) along the interface plane of y = �h between regions S1 and S2

permits the determination of A11, A12, A23, A24, A31 and A32 in terms of A13 and A14. The explicit expres-
sions for these coefficients that are identical for both symmetric and anti-symmetric tractions on the crack
surfaces are given in Appendix A.

Substituting for these coefficients in the expressions for the continuity of displacement components, Eqs.
(5a) and (5b) along the crack plane of y = 0 leads to
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u3ðx; 0þÞ � u1ðx; 0�Þ ¼ �ð1þ j1Þ
2

p

Z 1

0

A13 þ
ð1� j1Þ

2a
A14

� �
d‘

dðaxÞ‘
ðsinðaxÞÞda ¼ 0 ðy ¼ 0; jxj P aÞ

ð13aÞ

v3ðx; 0þÞ � v1ðx; 0�Þ ¼ ð1þ j1Þ
2

p

Z 1

0

A13 �
ð1þ j1Þ

2a
A14

� �
d‘

dðaxÞ‘
ðcosðaxÞÞda ¼ 0 ðy ¼ 0; jxj P aÞ

ð13bÞ

Imposing the applied tractions, Eq. (4) on the crack surfaces leads to
lim
y!0�

rð1Þ
yy ðx; yÞ ¼ lim

y!0�

Z 1

0

r̂ð1Þ
yy ða; yÞ

d‘

dðaxÞ‘
ðcosðaxÞÞda ¼ p

2
pðxÞ ðy ¼ 0; jxj < aÞ ð14aÞ

lim
y!0�

rð1Þ
xy ðx; yÞ ¼ lim

y!0�

Z 1

0

r̂ð1Þ
xy ða; yÞ

d‘

dðaxÞ‘
ðsinðaxÞÞda ¼ p

2
qðxÞ ðy ¼ 0; jxj < aÞ ð14bÞ
where
r̂ð1Þ
yy ða; yÞ ¼ 2al1ða1ð1þ 2aðhþ yÞÞe�að2hþyÞ � eayÞA13 þ l1ð1þ j1 � 2ayÞeayA14

þ l1ðð1þ j1Þl1ðj1=ðj1l2 þ l1Þ � j2=ðj2l1 þ l2ÞÞ � 4a2h2a1Þe�að2hþyÞA14

� l1a1ð2ahþ j1Þð1þ j1 þ 2ayÞe�að2hþyÞA14 ð15aÞ
and
r̂ð1Þ
xy ða; yÞ ¼ 2al1ða1ð�1þ 2aðhþ yÞÞe�að2hþyÞ þ eayÞA13 þ l1ð1� j1 þ 2ayÞeayA14

þ l1ðð1þ j1Þl1ðj1=ðj1l2 þ l1Þ � j2=ðj2l1 þ l2ÞÞ � 4a2h2a1Þe�að2hþyÞA14

� l1a1ð2ahþ j1Þð�1þ j1 þ 2ayÞe�að2hþyÞA14 ð15bÞ
in which the constant a1 is defined as a1 ¼ l1�l2
l1þj1l2

.

Representing the opening and sliding of the crack surfaces by the unknown auxiliary functions U(x) and
V(x) in the form
u3ðx; 0þÞ � u1ðx; 0�Þ ¼ UðxÞHða� xÞ ð16aÞ
v3ðx; 0þÞ � v1ðx; 0�Þ ¼ V ðxÞHða� xÞ ð16bÞ
ensures the continuity of the displacement components, Eqs. (5a) and (5b) along the crack plane. The Heavi-
side step function is represented byH(x). Note that these unknown functions,U(x) andV(x) have the property
of
UðxÞ ¼ ð�1Þ‘þ1Uð�xÞ and V ðxÞ ¼ ð�1Þ‘V ð�xÞ ð17Þ
Invoking these unknown functions into Eq. (13) and solving for A13 and A14 result in
A13 ¼ � 1

2 1þ j1ð Þ

Z 1

0

ð1þ j1ÞUðxÞ d‘

dðaxÞ‘
ðsinðaxÞÞ � ð1� j1ÞV ðxÞ

d‘

dðaxÞ‘
ðcosðaxÞÞ

 !
dx ð18aÞ
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and
A14 ¼ � 1

ð1þ j1Þ
a
Z 1

0

UðxÞ d‘

dðaxÞ‘
ðsinðaxÞÞ þ V ðxÞ d‘

dðaxÞ‘
ðcosðaxÞÞ

 !
dx ð18bÞ
Substituting for A13 and A14 in Eq. (14) and performing the appropriate limit operation leads to
� lim
y!0�

Z 1

0

dt V ðtÞ
Z 1

0

aeay
d‘

dðatÞ‘
ðcosðatÞÞ d‘

dðaxÞ‘
ðcosðaxÞÞda

þ
Z 1

0

dtUðtÞ
Z 1

0

AðaÞ d‘

dðatÞ‘
ðsinðatÞÞ d‘

dðaxÞ‘
ðcosðaxÞÞda

þ
Z 1

0

dt V ðtÞ
Z 1

0

BðaÞ d‘

dðatÞ‘
ðcosðatÞÞ d‘

dðaxÞ‘
ðcosðaxÞÞda ¼ p

2

1þ j1

2l1

pðxÞ ð19aÞ
and
� lim
y!0�

Z 1

0

dtUðtÞ
Z 1

0

aeay
d‘

dðatÞ‘
ðsinðatÞÞ d‘

dðaxÞ‘
ðsinðaxÞÞda

þ
Z 1

0

dtUðtÞ
Z 1

0

CðaÞ d‘

dðatÞ‘
ðsinðatÞÞ d‘

dðaxÞ‘
ðsinðaxÞÞda

þ
Z 1

0

dt V ðtÞ
Z 1

0

DðaÞ d‘

dðatÞ‘
ðcosðatÞÞ d‘

dðaxÞ‘
ðsinðaxÞÞda ¼ p

2

1þ j1

2l1

qðxÞ ð19bÞ
where the coefficients AðaÞ, BðaÞ, CðaÞ and DðaÞ are expressed as
AðaÞ ¼ að�c1 þ 2a1h
2a2Þe�2ha ð20aÞ

BðaÞ ¼ aðc2 þ 2a1hað1þ haÞÞe�2ha ð20bÞ
CðaÞ ¼ aðc2 þ 2a1hað�1þ haÞÞe�2ha ð20cÞ
DðaÞ ¼ að�c1 þ 2a1h

2a2Þe�2ha ð20dÞ
in which the known constants are defined by
c1 ¼
a1
2
þ a2

� �
and c2 ¼

a1
2
� a2

� �

with
a1 ¼
l1 � l2

l1 þ j1l2

and a2 ¼
j1l2 � j2l1

2ðl2 þ j2l1Þ
Considering symmetry properties of U(x) and V(x) and evaluating the infinite integrals in Eq. (19) lead
to a pair of integral equations with Hadamard-type singularity as
1

p

Z 1

�1

V ðtÞ
ðt � xÞ2

dt þ
Z 1

�1

V ðtÞK11ðx; tÞdt þ
Z 1

�1

UðtÞK12ðx; tÞdt ¼
1þ j1

2l1

pðxÞ ð21aÞ

1

p

Z 1

�1

UðtÞ
ðt � xÞ2

dt þ
Z 1

�1

V ðtÞK21ðx; tÞdt þ
Z 1

�1

UðtÞK22ðx; tÞdt ¼
1þ j1

2l1

qðxÞ ð21bÞ
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where the kernels are defined as
K11ðx; tÞ ¼
1

p
c2

4h2 � ðt � xÞ2

ððt � xÞ2 þ 4h2Þ2
þ 8a1h

2 4h2 � 3ðt � xÞ2

ððt � xÞ2 þ 4h2Þ3
þ 12a1h

2 16h
4 � 24h2ðt � xÞ2 þ t � xð Þ4

ððt � xÞ2 þ 4h2Þ4

" #

K12ðx; tÞ ¼
1

p
�4hc1

t � x

ððt � xÞ2 þ 4h2Þ2
þ 96a1h

3 ðt � xÞð4h2 � ðt � xÞ2Þ
ððt � xÞ2 þ 4h2Þ4

" #

K21ðx; tÞ ¼ �K12ðx; tÞ

K22ðx; tÞ ¼
1

p
c2

4h2 � ðt � xÞ2

ððt � xÞ2 þ 4h2Þ2
� 8a1h

2 ð4h2 � 3ðt � xÞ2Þ
ððt � xÞ2 þ 4h2Þ3

þ 12a1h
2 16h

4 � 24h2ðt � xÞ2 þ ðt � xÞ4

ððt � xÞ2 þ 4h2Þ4

" #
By using the function-theoretic method of Muskhelishvili (1992) and the properties of hypersingular
integral equations described by Ioakimidis (1988a,b, 1990), Kaya (1984), Kaya and Erdogan (1987) and
later by Chan et al. (2003), the solution form of U(x) and V(x) in these integral equations, Eqs. (21a)
and (21b), can be represented by
V ðxÞ ¼ G1ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ð22aÞ

UðxÞ ¼ G2ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ð22bÞ
where G1(x) and G2(x) are the new unknown bounded functions.
In accordance with Irwin (1957), the singular stress field directly ahead of the crack tip is characterized

by the stress intensity factors in the form
rxx þ irxy ¼ lim
r!0

k1 þ ik2ffiffiffiffiffi
2r

p ð23Þ
where k1 and k2 represent the stress intensity factors related to the opening and sliding modes, respectively,
and r is the distance from crack tip.

Utilizing Eqs. (22a) and (22b), the stress intensity factors for opening and sliding modes can be evaluated
as
k1ð1Þ ¼ lim
x!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þ

p
ryyðxÞ ¼

2l1

1þ j1

lim
x!1

V ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼ 2l1

1þ j1

G1ð1Þ ð24aÞ

k1ð�1Þ ¼ lim
x!�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þ

p
ryyðxÞ ¼

2l1

1þ j1

lim
x!�1

V ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼ 2l1

1þ j1

G1ð�1Þ ð24bÞ

k2ð1Þ ¼ lim
x!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þ

p
rxyðxÞ ¼

2l1

1þ j1

lim
x!1

UðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼ 2l1

1þ j1

G2ð1Þ ð24cÞ

k2ð�1Þ ¼ lim
x!�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þ

p
rxyðxÞ ¼

2l1

1þ j1

lim
x!�1

UðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ¼ 2l1

1þ j1

G2ð�1Þ ð24dÞ
The total energy release rate can be written in terms of stress intensity factors as
G ¼ G1 þ G2 ¼
pð1þ j1Þ

4l1

ðk21 þ k22Þ ð25Þ
The explicit form of the singular integral equations for an interface crack can be derived as the distance,
h approaches zero, i.e., h ! 0+ in Eq. (19), resulting in



B. Kilic et al. / International Journal of Solids and Structures 43 (2006) 1159–1188 1169
� lim
y!0�

Z 1

0

dt V ðtÞ
Z 1

0

aeay
d‘

dðatÞ‘
ðcosðatÞÞ d‘

dðaxÞ‘
ðcosðaxÞÞda

� c1 lim
h!0þ

Z 1

0

dtUðtÞ
Z 1

0

ae�2ha d‘

dðatÞ‘
ðsinðatÞÞ d‘

dðaxÞ‘
ðcosðaxÞÞda

þ c2 lim
h!0þ

Z 1

0

dt V ðtÞ
Z 1

0

ae�2ha d‘

dðatÞ‘
ðcosðatÞÞ d‘

dðaxÞ‘
ðcosðaxÞÞda ¼ p

2

1þ j1

2l1

pðxÞ ð26aÞ
and
� lim
y!0�

Z 1

0

dtUðtÞ
Z 1

0

aeay
d‘

dðatÞ‘
ðsinðatÞÞ d‘

dðaxÞ‘
ðsinðaxÞÞda

þ c2 lim
h!0þ

Z 1

0

dtUðtÞ
Z 1

0

ae�2ha d‘

dðatÞ‘
ðsinðatÞÞ d‘

dðaxÞ‘
ðsinðaxÞÞda

� c1 lim
h!0þ

Z 1

0

dt V ðtÞ
Z 1

0

ae�2ha d‘

dðatÞ‘
ðcosðatÞÞ d‘

dðaxÞ‘
ðsinðaxÞÞda ¼ p

2

1þ j1

2l1

qðxÞ ð26bÞ
After defining 2h = �y and changing the appropriate variable in these equations, and evaluating the
appropriate infinite integrals, these expressions can be rewritten as
1

2
ðc2 � 1Þ lim

y!0�

Z 1

0

dt V ðtÞ y2 � ðt � xÞ2

ððt � xÞ2 þ y2Þ2
þ ð�1Þ‘ y2 � ðt þ xÞ2

ððt þ xÞ2 þ y2Þ2

 !

� 1

2
c1 lim

y!0�

Z 1

0

dtUðtÞ
Z 1

0

daaeayðsin aðt � xÞ þ ð�1Þ‘ sin aðt þ xÞÞ ¼ p
2

1þ j1

2l1

pðxÞ ð27aÞ
and
1

2
ðc2 � 1Þ lim

y!0�

Z 1

0

dtUðtÞ y2 � ðt � xÞ2

ððt � xÞ2 þ y2Þ2
� ð�1Þ‘ y2 � ðt þ xÞ2

ððt þ xÞ2 þ y2Þ2

 !

þ 1

2
c1 lim

y!0�

Z 1

0

dt V ðtÞ
Z 1

0

daaeayðsin aðt � xÞ � ð�1Þ‘ sin aðt þ xÞÞ ¼ p
2

1þ j1

2l1

qðxÞ ð27bÞ
By performing the limit operation and evaluating the infinite integrals while considering symmetry prop-
erties of U(x) and V(x), these equations are further reduced to
1

p

Z 1

�1

dt
V ðtÞ

ðt � xÞ2
� c

dU
dx

ðxÞ ¼ 1þ j1

2l1ð1� c2Þ
pðxÞ ð28aÞ
and
1

p

Z 1

�1

dt
UðtÞ

ðt � xÞ2
þ c

dV
dx

ðxÞ ¼ 1þ j1

2l1ð1� c2Þ
qðxÞ ð28bÞ
where c ¼ c1
1�c2

. Knowing that any function can be decomposed into the sum of even and odd functions,

these integral equations are valid for general loading functions.

These integro-differential equations can be combined into the following final form by multiplying Eq.
(28a) by �i and adding to (28b):
1

pi

Z 1

�1

dt
f ðtÞ

ðt � xÞ2
þ c

df ðxÞ
dx

¼ 1

2l0

ðqðxÞ � ipðxÞÞ ð29Þ
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where l0 ¼ l1
1�c2
1þj1

and the auxiliary function, f(x) is defined as
f ðxÞ ¼ V ðxÞ þ iUðxÞ ð30Þ
Analogous to the solution of Eq. (21), the solution to this integral equation, f(x) can be represented by
f ðxÞ ¼ G0ðxÞ
ð1� xÞað1þ xÞb

ð31Þ
where G0(x) is an unknown bounded function and
a ¼ � 1

2
þ ix; b ¼ � 1

2
� ix with x ¼ 1

2p
ln

1� c
1þ c

� �
ð32Þ
According to Rice (1988), the singular stress field ahead of the crack tip is characterized by the complex
stress intensity factor in the form
rxx þ irxy ¼ lim
r!0

kffiffiffiffiffi
2r

p r
‘

� �ix
ð33Þ
where r is the distance from crack tip, and k = k1 + ik2 is the complex interface stress intensity factor. The
characteristic length parameter, ‘, eliminates the dependency of the complex stress intensity factor,
k = k1 + ik2 on the measuring unit of the crack length.

This definition is equivalent to that of Erdogan and Gupta (1971a,b) for ‘ = a, and the stress intensity
factors, k1 and k2 become
k1 þ ik2 ¼ lim
x!1

ðx� 1Þ�bðxþ 1Þ�aðryy þ irxyÞ ð34Þ
By using Eq. (31), these stress intensity factors can be expressed as
1

2l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p ðk1ð1Þ þ ik2ð1ÞÞ ¼ �2a lim
x!1

ð1� xÞað1þ xÞbf ðxÞ ¼ �2aG0ð1Þ ð35aÞ

1

2l0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p ðk1ð�1Þ þ ik2ð�1ÞÞ ¼ �2b lim
x!�1

ð1� xÞað1þ xÞbf ðxÞ ¼ �2bG0ð�1Þ ð35bÞ
As introduced by Erdogan and Gupta (1971a,b), the energy release rate can be related to the stress inten-
sity factors in the form
G ¼ p
2

ðl1 þ j1l2Þðl2 þ j2l1Þ
l1l2½ð1þ j1Þl2 þ ð1þ j2Þl1�

ðk21 þ k22Þ ð36Þ
4. Numerical analysis

The complexity of the kernels in Eqs. (21) and (29) requires that the singular integral equations be solved
numerically. The solution procedure involves the reduction of the integral equations with Hadamard-type
singularities to a system of linear algebraic equations using the collocation technique introduced by Miller
and Keer (1985) and later extended by Quan (1991) to include the generalized Cauchy kernel, and by Kabir
et al. (1998) to consider logarithmic-, Cauchy-, and Hadamard-type singularities. In this technique, the
quadrature interval [�1, 1] is partitioned into a series of subintervals and the integration points, tk at the
ends and midpoint of each subinterval as shown in Fig. 4. The collocation points, xj, are defined at the mid-
point of two consecutive integration points.



Fig. 4. Discretization of the quadrature interval.
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The unknown functions, Gi(x) with i = 0, 1, 2, defined by Eqs. (22) and (31), are approximated over each
subinterval (ti[2k�1] 6 t 6 ti[2k+1]) for k = 1, N by quadratic Lagrange interpolation polynomials which are
given as
GiðtÞ � ½ðt � ti½2k�Þ2=h2i½k� � ðt � ti½2k�Þ=hi½k��Gi½2k�1�=2þ ½1� ðt � ti½2k�Þ2=h2i½k��Gi½2k� þ ½ðt � ti½2k�Þ2=h2i½k�
þ ðt � ti½2k�Þ=hi½k��Gi½2kþ1�=2 ð37Þ
where Gi[k] = Gi(ti[k]) and hi[k] = (ti[2k+1] � ti[2k�1])/2 with i = 0, 1, 2.

4.1. Cohesive crack

In the case of a cohesive crack under shear loading, in order to establish the extent of the contact zone,
the normal tractions on the crack surfaces, p(x) is decomposed as
pðxÞ ¼ paðxÞ þ prðxÞ ð38Þ

where pa(x) and pr(x) are the known applied normal tractions and unknown normal reactions, respectively.
The normal reactions which cannot positive, i.e. pr(x) 6 0, develop if the contact zone between the crack
surfaces occurs. Therefore, the normal reactions prevent the interpenetration between the opposing crack
surfaces. Because the reactions are unknown, pr(x) is approximated over each subinterval
k(ti[k] 6 t 6 ti[k+1]) for k = 1, . . . , 2N by linear interpolation functions given by
prðxÞ ¼ vðxÞPkþ1 þ ð1� vðxÞÞPk ð39Þ

in which Pk = pr(ti[k]) and vðxÞ ¼ x�ti½k�

ti½kþ1��ti½k�
.

Approximation of the unknown functions, G1(x) and G2(x) and the unknown reactions on the crack sur-
faces, pr(x) permit the discretization of Eq. (21) as
1

p

X2N1þ1

i¼1

w1½i�ðxjÞG1½i� þ
X2N1þ1

i¼1

K11ðxj; tiÞv1½i�G1½i� þ
X2N2þ1

i¼1

K12ðxj; tiÞv2½i�G2½i�

¼ 1þ j1

4l1

ðP jþ1 þ P jÞ þ
1þ j1

2l1

paðxjÞ j ¼ 1; . . . ; 2N 1 ð40Þ
and
1

p

X2N2þ1

i¼1

w2½i�ðxjÞG2½i� þ
X2N1þ1

i¼1

K21ðxj; tiÞv1½i�G1½i� þ
X2N2þ1

i¼1

K22ðxj; tiÞv2½i�G2½i� ¼
1þ j1

2l1

qðxjÞ j ¼ 1; . . . ; 2N 2

ð41Þ

in which N1 and N2 are number of subintervals for unknown functions G1(x) and G2(x), respectively. The
singular weight functions, vi[k] and wi[k](x) are given by Kabir et al. (1998). Since this discretization results in
a number of unknowns, Gi[k], which are two more than the number of equations, two additional constraint
equations become necessary in order to achieve a unique solution to Eqs. (40) and (41). However, the
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nature of this solution method does not introduce any additional constraint equations based on the physics
of the problem. As suggested by Kabir et al. (1998), the necessary additional constraint equations are ob-
tained by multiplying the integral equations by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
and integrating over x can be expressed in the form
�
Z 1

�1

dt V ðtÞ þ
Z 1

�1

dt V ðtÞK11ðtÞ þ
Z 1

�1

dt V ðtÞK12ðtÞ ¼ p ð42ÞZ 1

�1

dtUðtÞ þ
Z 1

�1

dt V ðtÞK21ðtÞ þ
Z 1

�1

dt V ðtÞK22ðtÞ ¼ q ð43Þ
in which KijðtÞ, pðxÞ and qðxÞ are defined as
KijðtÞ ¼
Z 1

�1

dxKijðx; tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
i; j ¼ 1; 2 ð44Þ

p ¼ 1þ j1

2l1

Z 1

�1

ðpaðxÞ þ prðxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx ð45Þ

q ¼ 1þ j1

2l1

Z 1

�1

dxqðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ð46Þ
These additional constraint equations (42) and (43) are also discretized as
�
X2N1þ1

i¼1

v1½i�G1½i� þ
X2
n¼1

X2Nnþ1

i¼1

K1nðtiÞvn½i�Gn½i� ¼
X2N1

i¼1

b½l�i P i þ b½r�i P iþ1 þ pa ð47Þ
and
�
X2N2þ1

i¼1

v2½i�G2½i� þ
X2
n¼1

X2Nnþ1

i¼1

K2nðtiÞvn½i�Gn½i� ¼ q ð48Þ
where pr(x) is approximated in the same manner as before, Eq. (39), and b½l�i ; b
½r�
i and pa are defined by
b½l�i ¼ 1þ j1

2l1

Z xiþ1

xi

dxvðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ð49Þ

b½r�i ¼ 1þ j1

2l1

Z xiþ1

xi

dx ð1� vðxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ð50Þ

pa ¼
1þ j1

2l1

Z 1

�1

dxpaðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
ð51Þ
in which b½l�i and b½r�i can be evaluated exactly.
The discrete form of the singular integral equations and constraint equations can be cast into the form
AjiGi � BjiP i ¼ gi i; j ¼ 1; . . . ;N ð52Þ

in which N is equal to 2(N1 + N2 + 1). The unknown vectors can be written as
GT ¼ fG1½1�; . . . ;G1½2N1þ1�;G2½1�; . . . ;G2½2N2þ1�g
and
PT ¼ fP 1; . . . ; P 2N1þ1; 0; . . . ; 0g
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In the solution of Eq. (52), the unknown vectors have to satisfy the constraint equation arising from the
presence of contact zones. This constraint equation can be expressed as
V i ¼ V ðtiÞ ¼ 0 if P i ¼ prðtiÞ < 0 ð53aÞ
and
P i ¼ prðtiÞ ¼ 0 if V i ¼ V ðtiÞ P 0 ð53bÞ
This constraint equation ensures that there is no interpenetration by enforcing the opening displacements to
be equal to zero due to the presence of compressive normal reactions along the contact zone. The tensile
reactions are enforced to be zero for positive crack opening displacement. As a result of this constraint
equation, either the crack opening displacement, V(ti), or the reaction, pr(ti), is equal to zero at every inte-
gration point i depending on its value. Therefore, the solution to Eq. (52) requires an iterative scheme. The
solution procedure starts with assuming either Pi = 0 or Vi = 0 at every integration point.

With the assumed values of Pi or Vi, Eq. (52) having equal number of equations and unknowns can be
solved directly. This linear system of equations is solved continuously by updating the status of every inte-
gration point after each solution until convergence is achieved. The status at each integration point is up-
dated by checking Eq. (53) in which, if the constraint condition is not satisfied, the status of that point is
updated for the next step by interchanging the value of Pi = 0 with Vi = 0 if Pi is positive and Vi = 0 with
Pi = 0 if Vi is negative.

4.2. Interface crack

In the case of an interface crack, the approximation of the unknown function G0(x) in Eq. (31) allows
discretization of Eq. (29) as
1

pi

X2N0þ1

i¼1

w0½i�ðxjÞG0½i� þ
c

ð1� xjÞað1þ xjÞb
XM
m¼1

DmhjG0½Lþm� þ c
a� bþ ðaþ bÞxj

ð1� xjÞ1það1þ xjÞ1þb

XM
m¼1

BmG0½Iþm�

¼ P jþ1 þ P j

4l0i
þ 1

2l0

ðqðxjÞ � ipaðxjÞÞ ð54Þ
where I and Bm are given by Kabir et al. (1998) and hj, L and Dm are defined in Appendix A. Similar to the
discretization of equations for a cohesive crack, this discretization also results in a number of unknowns,
G0[k] which are one more than the number of equations. Therefore, the necessary additional constraint
equation is introduced by multiplying the integro-differential equation by (1 � x2)3/2 and integrating over
x, and after performing the appropriate algebraic manipulations leads to
Z 1

�1

dt ~HðtÞf ðtÞ ¼ ~g ð55Þ
where ~HðtÞ ¼ 3ct
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
þ i3ð1=2� t2Þ and ~g ¼ 1

2l0

R 1

�1
dx ðqðxÞ � ipðxÞÞð1� x2Þ3=2.

This additional constraint equation is also discretized as
X2N0þ1

i¼1

~HðtiÞv0½i�G0½i� ¼ ~g ð56Þ
in which ~g is defined by
~g ¼ 1

2l0

Z 1

�1

dx ðqðxÞ � ipaðxÞÞð1� x2Þ3=2 ð57Þ
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The discrete form of the singular integral equation and constraint equation can be cast into the form
AjiGi ¼ gi i; j ¼ 1; . . . ;N ð58Þ

where N is equal to 2N0 + 1 and the unknown vector is in the form of
GT ¼ fG0½1�; . . . ;G0½2N0þ1�g ð59Þ
In the presence of shear loading, the direct application of the approach to determine the compressive
normal reactions over the contact zone and the extent of the contact zone simultaneously results in extreme
numerical oscillations in the crack opening displacement. However, the solutions to both the normal reac-
tion and the opening displacement lead to acceptable results in an average sense indicating that the oscil-
lations in the solution is primarily due the oscillatory behavior of the unknown function. This is further
validated by the fact that the frequency and magnitude of the oscillations amplify with increasing number
of subintervals.

In order to alleviate and possibly eliminate this extreme oscillation in numerical results, the solution
method utilizes a Cauchy-type singular integral equation obtained by integration by parts of Eq. (29).
The singular integral equations with both Hadamard- and Cauchy-type singularities are then solved con-
secutively in an iterative manner to determine the normal reactions over the contact zone and the extent of
the contact zone. By using the conditions f(�1) = f(1) = 0, the Cauchy-type singular integral equation is
obtained as
1

pi

Z 1

�1

#ðtÞ
t � x

dt þ c#ðxÞ ¼ 1

2l0

ðqðxÞ � ipðxÞÞ ð60Þ
in which #ðxÞ ¼ df ðxÞ
dx ¼ dV ðxÞ

dx þ i dUðxÞ
dx .

Utilizing the function-theoretic method of Muskhelishvili (1992), the solution form of #(x) can be rep-
resented by
#ðxÞ ¼ /ðxÞ
ð1� xÞ�bð1þ xÞ�a ð61Þ
where /(x) is an unknown bounded function and a and b are defined as in Eq. (32). The solution to Eq. (60)
contains one arbitrary constant which is determined by imposing the condition of single-valuedness of dis-
placements as
Z 1

�1

#ðtÞdt ¼ 0 ð62Þ
Although the exact solutions to singular integral equations with Cauchy-type singularity exist for certain
simple forms of p(x) and q(x), the unknown normal tractions requires that the Cauchy-type singular inte-
gral equation be solved numerically subjected to the appropriate contact zone conditions. As described in
the solution of Hadamard-type singular integral equations, the unknown function /(x) is approximated
over each of the subinterval by using quadratic Lagrange interpolation polynomial as given in Eq. (39).
With the discretized form of the unknown function /(x), Eqs. (60) and (62) can be rewritten as
1

pi

X2N0þ1

i¼1

wc
½i�ðxjÞ/½i� þ

c

ð1� xjÞ�bð1þ xjÞ�a

X3
m¼1

Bm/½Iþm� ¼
P j

2l0i
þ 1

2l0

ðqðxjÞ � ipaðxjÞÞ j ¼ 1; . . . ; 2N 0

ð63Þ

X2N0þ1

i¼1

m½i�ðxjÞ/½i� ¼ 0 ð64Þ
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in which singular weight functions, mc½i� and wc
½i�, and the Lagrange coefficients, Bm, and parameter I can be

found in Kabir et al. (1998).
The discrete forms of Cauchy-type singular integral equation, Eq. (63) and single valuedness condition,

Eq. (64) are cast into the matrix form as
Ac
ji/

c
i � Bc

jiP i ¼ gi i; j ¼ 1; . . . ;N ð65Þ
where N is equal to 2N0 + 1 and unknown vectors are in the form of
/T ¼ f/½1�; . . . ;/t½2N0þ1�g ð66aÞ
and
PT ¼ fP 1; . . . ; P 2N0
; 0g ð66bÞ
This constraint condition arising from the presence of a contact zone is given by
d

dx
V ðxjÞ ¼ 0 if P i ¼ prðxjÞ 6 0 ð67Þ
This condition is applied in an average sense along the contact zone as
Z tjþ1

tj

#ðxÞdx ¼ 0 ð68Þ
whose discrete form can be written as
Refm½j�ðxjÞ/½j� þ m½jþ1�ðxjÞ/½jþ1�g ¼ 0 ð69Þ
Since neither the normal reactions over the contact zone and the extent of the contact zone are not
known a priori, Eqs. (58) and (65) are solved through an iterative scheme. The solution procedure starts
with the determination of the initial estimate for the extent of contact zone by solving Eq. (58) in the ab-
sence of unknown normal tractions. With the initial estimate of the contact zone, Eq. (65) is then solved for
the compressive reactions over the contact zone. However, the reactions computed by solving Eq. (65) have
an oscillatory behavior. This behavior is corrected by smoothing the reactions along the predicted contact
zone. The smoothing of reactions is performed by calculating the reactions at integration points and pro-
jecting back onto the collocation points by using linear approximation given in Fig. 5. With the smoothed
normal reactions over the contact zone, Eq. (58) is the resolved for the contact zone. This procedure is re-
peated by continuously updating the extent of the contact zone according to Eq. (67) until convergence is
achieved.
Fig. 5. Schematic for removing numerical noise from computed reactions.
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5. Numerical results

The numerical results concern both the uniform pressure and uniform shear loading on the crack sur-
faces. Poisson�s ratios for the materials are specified as m1 = 0.35 and m2 = 0.3, and the ratio of their shear
moduli is specified as l2/l1 = 20. The validity of the present analysis results is established by comparison
against the finite element predictions.

5.1. Uniform pressure

In the solution of the integral equations for uniform pressure loading, the number of subintervals asso-
ciated with each unknown functions is chosen as 300 and 500 for the cohesive and interface crack config-
urations, respectively. In the case of the cohesive crack, the crack opening displacements are symmetric and
the sliding displacements are anti-symmetric with respect to the y-axis as expected because of the presence
of symmetry in geometry. As shown in Figs. 6 and 7, the present analysis predictions are in remarkable
agreement with the finite element results for h/a = 0.5. As presented in Table 1, the stress intensity factor
for the opening mode decreases as the crack approaches the interface from soft material side. However, the
stress intensity factor for the opening mode increases if the crack is approaching the interface from the stiff
material side as presented in Table 2. The stress intensity factor associated with the sliding mode increases
as the crack approaches the interface either the soft or stiff material side.
Fig. 6. Opening displacement for a cohesive crack for h/a = 0.5.



Fig. 7. Sliding displacement for a cohesive crack for h/a = 0.5.

Table 1
Normalized stress intensity factors and energy release rates for a pressurized crack (l2/l1 = 20, m1 = 0.35, m2 = 0.3, p(x) = �p0,
q(x) = 0)

h/a 1þ j1
2l1p0

k1ð1Þ
1þ j1
2l1p0

k2ð1Þ
4l1

ð1þ j1Þp20
Gð1Þ

0.2 0.7424 0.1272 0.5674
0.3 0.7583 0.1118 0.5874
0.4 0.7718 0.1010 0.6059
0.5 0.7841 0.0923 0.6233
0.6 0.7955 0.0846 0.6400
0.7 0.8064 0.0773 0.6563
0.8 0.8171 0.0704 0.6725
0.9 0.8275 0.0637 0.6888
1.0 0.8377 0.0573 0.7051
1.5 0.8840 0.0325 0.7825
2.0 0.9178 0.0185 0.8427
2.5 0.9404 0.0111 0.8845
3.0 0.9555 0.0071 0.9130
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In the case of an interface crack, the opening displacement is also symmetric and the sliding displacement
is anti-symmetric with respect to y-axis as shown in Figs. 8 and 9. As shown in Fig. 10 in which regions S1



Table 2
Normalized stress intensity factors and energy release rates for a pressurized crack (l2/l1 = 1/20, m1 = 0.3, m2 = 0.35, p(x) = �p0,
q(x) = 0)

h/a 1þ j1
2l1p0

k1ð1Þ
1þ j1
2l1p0

k2ð1Þ
4l1

ð1þ j1Þp20
Gð1Þ

0.2 2.5446 0.8383 7.1778
0.3 2.3413 0.7055 5.9793
0.4 2.1215 0.5626 4.8174
0.5 1.9287 0.4415 3.9150
0.6 1.7732 0.3476 3.2651
0.7 1.6504 0.2764 2.8001
0.8 1.5531 0.2224 2.4616
0.9 1.4753 0.1809 2.2093
1.0 1.4123 0.1487 2.0168
1.5 1.2255 0.0632 1.5059
2.0 1.1398 0.0315 1.3002
2.5 1.0943 0.0176 1.1978
3.0 1.0675 0.0107 1.1397

Fig. 8. Opening displacement for an interface crack.
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and S2 represents soft and stiff material sides, respectively, the energy release rate decreases as the crack
approaches the interface from the soft material side and it increases if the crack is in the stiff material side.



Fig. 9. Sliding displacement for an interface crack.
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However, the energy release rate for a crack approaching the interface from the soft material side or stiff
material side is asymptotically approaching the value associated with that of the interface crack. Based on
the energy release rate criterion, the crack in the soft material away from the interface reaches the critical
energy release rate value before the crack close to the interface under the same loading conditions. Thus, the
crack away from the interface is more critical than the crack close to the interface if the crack is in the soft
material. Based on a similar observation, the crack close to the interface is more critical than the crack away
from the interface if the crack is in stiff material.

5.2. Uniform shear

In the solution of the integral equations for uniform shear loading, the number of subintervals
associated with each unknown function is chosen as 500 and 1000 for the cohesive and the interface
crack configurations, respectively. Although the applied loading is anti-symmetric with respect to the
y-axis, results do not exhibit any symmetry because of the existence of the contact zone as shown in
Figs. 11–14.

In the case of a cohesive crack, the contact zone and the crack opening displacements are predicted with-
out any numerical oscillations, and compare well with the finite element predictions as shown in Figs. 11
and 12. However, the oscillatory behavior of the singular integral equation associated with the interface
crack leads to an oscillatory crack opening and sliding behavior as shown in Figs. 13 and 14. Although
these results do not appear to be exactly satisfied, their general (smoothed) behavior also compares well



Fig. 10. Variation of energy release rate for a crack under uniform pressure.
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with those of the finite element predictions. Furthermore, the length of the contact zone is also in remark-
able agreement with the finite element analysis predictions as shown in Fig. 16.

As a result of the contact zone, the stress intensity factors do not have the same magnitudes at the
crack tips. Because of the contact zone, the opening mode stress intensity factor is equal to zero at
the crack tip where the contact zone occurs. The sliding mode stress intensity factor at contact side of
the crack tip is slightly larger than the one at crack tip where no contact zone exists as presented in
Tables 3 and 4. However, the energy release rates are similar at both ends of the crack as shown in
Fig. 15. The energy release rate for a crack approaching the interface from the soft material side or stiff
material side is asymptotically approaching the value associated with that of the interface crack as shown
in Fig. 15. Similar to the crack under uniform pressure loading, the crack away from the interface is
more critical than the crack close to the interface if the crack is in the soft material. On the contrary,
the crack close to the interface is more critical than the crack away from the interface if the crack is
in the stiff material side.

As shown in Fig. 16, the length of the contact zones obtained from the singular integral equations and
finite element analysis are in remarkable agreement. However, the cracks approaching the interface from
the soft material side and the stiff material side do not lead to a common value representative of an interface
crack. As the crack approaches to the interface from the stiff material side, the interface behaves like a



Fig. 11. Opening displacement for a cohesive crack under uniform shear loading for h/a = 0.5.
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traction-free boundary. Therefore, the contact zone length diminishes because the resistance to crack open-
ing decreases as the crack approaches the interface. On the other hand, when the crack approaches to the
interface form the soft material side, the interface behaves like a rigid boundary which leads to an increase
in the contact zone length.
6. Conclusions

This study examines the behavior of the energy release rate as the cohesive crack located parallel to the
interface approaches the interface from either the soft or the stiff side of the interface while ensuring no
interpenetration. The limiting value of the energy release rate is established by considering an interface
crack. In order to impose the appropriate constraint conditions on the crack opening displacements, the
solution method treats both the crack opening and sliding displacements as primary unknowns. The crack
opening displacements are physically more meaningful and readily validated against the finite element anal-
ysis predictions. As the cohesive crack approaches the interface from either side of the interface, the energy
release rate approaches to that of the interface crack. This is indicative of a continuous behavior for the
energy release rate, and that the interface crack is a natural limit of a cohesive crack. However, the length
of contact zone on the crack surfaces under uniform shear loading does not approach to that of the inter-
face crack. The results of the present analysis are in remarkable agreement with the finite element
predictions.



Fig. 12. Sliding displacement for a cohesive crack under uniform shear loading for h/a = 0.5.
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Appendix A

The explicit form of the coefficients in Eq. (11) are given by
A11 ¼ ðj1 � 2ahÞa1e�2ahA13

þ j2l1ðð1þ 4a2h2 � j2
1Þl1 þ ðj2

1 þ j1 � 4a2h2Þl2Þ � l2ðj1ð1þ j1Þl1 þ 4a2h2ðl2 � l1ÞÞ
2aðl2 þ j2l1Þðl1 þ j1l2Þ

e�2ahA14

A12 ¼ �2aa1e�2ahA13 þ ðj1 þ 2ahÞa1e�2ahA14

A23 ¼
ð1þ j1Þl1

l1 þ j1l2

A13 þ
ð1þ j1Þl1ð�j1l2 � 2ahððj2 � 1Þl1 þ l2ð1� j1ÞÞ þ j2ðl1ð1� j1Þ þ j1l2ÞÞ

2aðl2 þ j2l1Þðl1 þ j1l2Þ
A14

A24 ¼
ð1þ j1Þl1

j2l1 þ l2

A14

A31 ¼ ½�j1 þ ðj1 � 2ahÞa1e�2ah�A13

þ l2ð4a2h2ðl1 � l2Þ � j1ð1þ j1Þl1Þ þ j2l1ðl1ð1� j2
1 þ 4a2h2Þ þ l2ðj1ð1þ j1Þ � 4a2h2ÞÞ

2a l2 þ j2l1ð Þ l1 þ j1l2ð Þ e�2ah

�

þ
j2
1 � 1


 �
2a

�
A14

A32 ¼ ð2� 2a1e�2ahÞaA13 � ðj1 � ð2ahþ j1Þa1e�2ahÞA14



Fig. 13. Opening displacement for an interface crack under uniform shear loading.
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The parameters, Dm, hj and L in Eq. (54) are dependent on the degree of approximation dictated by the
value of M which is chosen to be 5 for higher order approximation. Regardless of the order of approxima-
tion, the discretization results in a uniform length for each subinterval, and the spacing between the inte-
gration points can be expressed as
hj ¼ tj þ 1� tj
The parameters, L and Dm are defined by using Lagrange�s differentiation formulas given by Abramowitz
and Stegun (1965), and their explicit form for M = 5 is expressed as
L ¼

0 j ¼ 1

j� 2 j < N 0 and j 6¼ 1

j� 3 j P N 0 and j 6¼ 2N 0

2N 0 � 4 j ¼ 2N 0

8>>>>><
>>>>>:

D1ðhÞ ¼

�11=ð12hÞ j ¼ 1

�1=ð24hÞ j < N 0 and j 6¼ 1

0 j P N 0 and j 6¼ 2N 0

�1=ð24hÞ j ¼ 2N 0

8>>>>><
>>>>>:



Fig. 14. Sliding displacement for an interface crack under uniform shear loading.

Table 3
Normalized stress intensity factors and energy release rates for a crack under uniform shear (l2/l1 = 20, m1 = 0.35, m2 = 0.3, p(x) = 0,
q(x) = �q0)

h/a 1þ j1
2l1q0

k1ð1Þ
1þ j1
2l1q0

k2ð1Þ
1þ j1
2l1q0

k1ð�1Þ 1þ j1
2l1q0

k2ð�1Þ 4l1
ð1þ j1Þq20

Gð1Þ 4l1
ð1þ j1Þq20

Gð�1Þ

0.2 0.1475 0.8028 0.0000 0.8163 0.6662 0.6662
0.3 0.1339 0.8368 0.0000 0.8474 0.7181 0.7181
0.4 0.1236 0.8627 0.0000 0.8715 0.7596 0.7596
0.5 0.1142 0.8823 0.0000 0.8897 0.7915 0.7915
0.6 0.1049 0.8970 0.0000 0.9031 0.8157 0.8157
0.7 0.0957 0.9082 0.0000 0.9133 0.8341 0.8341
0.8 0.0865 0.9171 0.0000 0.9211 0.8485 0.8485
0.9 0.0776 0.9243 0.0000 0.9275 0.8603 0.8603
1.0 0.0692 0.9304 0.0000 0.9329 0.8704 0.8704
1.5 0.0377 0.9525 0.0000 0.9532 0.9087 0.9087
2.0 0.0211 0.9667 0.0000 0.9669 0.9349 0.9349
2.5 0.0125 0.9759 0.0000 0.9760 0.9526 0.9526
3.0 0.0079 0.9820 0.0000 0.9821 0.9644 0.9644
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Table 4
Normalized stress intensity factors and energy release rates for a crack under uniform shear (l2/l1 = 120, m1 = 0.3, m2 = 0.35, p(x) = 0,
q(x) = �q0)

h/a 1þ j1
2l1q0

k1ð1Þ
1þ j1
2l1q0

k2ð1Þ
1þ j1
2l1q0

k1ð�1Þ 1þ j1
2l1q0

k2ð�1Þ 4l1
ð1þ j1Þq20

Gð1Þ 4l1
ð1þ j1Þq20

Gð�1Þ

0.2 0.0000 1.2843 0.4259 1.2117 1.6494 1.6495
0.3 0.0000 1.1971 0.3789 1.1356 1.4330 1.4330
0.4 0.0000 1.1537 0.3333 1.1045 1.3309 1.3310
0.5 0.0000 1.1289 0.2887 1.0914 1.2744 1.2744
0.6 0.0000 1.1130 0.2476 1.0852 1.2389 1.2389
0.7 0.0000 1.1018 0.2112 1.0813 1.2139 1.2139
0.8 0.0000 1.0930 0.1799 1.0781 1.1946 1.1946
0.9 0.0000 1.0856 0.1532 1.0747 1.1786 1.1786
1.0 0.0000 1.0792 0.1307 1.0712 1.1646 1.1646
1.5 0.0000 1.0545 0.0618 1.0527 1.1120 1.1120
2.0 0.0000 1.0382 0.0323 1.0377 1.0778 1.0778
2.5 0.0000 1.0275 0.0184 1.0274 1.0558 1.0558
3.0 0.0000 1.0205 0.0113 1.0204 1.0414 1.0414

Fig. 15. Variation of energy release rate for a crack under uniform shear.
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Fig. 16. Length of the contact zone under constant shear loading.

1186 B. Kilic et al. / International Journal of Solids and Structures 43 (2006) 1159–1188
D2ðhÞ ¼

17=ð24hÞ j ¼ 1

�9=ð8hÞ j < N 0 and j 6¼ 1

1=ð24hÞ j P N 0 and j 6¼ 2N 0

5=ð24hÞ j ¼ 2N 0

8>>>><
>>>>:

D3ðhÞ ¼

3=ð8hÞ j ¼ 1

9=ð8hÞ j < N 0 and j 6¼ 1

�9=ð8hÞ j P N 0 and j 6¼ 2N 0

�3=ð8hÞ j ¼ 2N 0

8>>>><
>>>>:

D4ðhÞ ¼

�5=ð24hÞ j ¼ 1

�1=ð24hÞ j < N 0 and j 6¼ 1

9=ð8hÞ j P N 0 and j 6¼ 2N 0

�17=ð24hÞ j ¼ 2N 0

8>>>><
>>>>:

D5ðhÞ ¼

1=ð24hÞ j ¼ 1

0 j < N 0 and j 6¼ 1

�1=ð24hÞ j P N 0 and j 6¼ 2N 0

11=ð12hÞ j ¼ 2N 0

8>>>><
>>>>:
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